Cargando…
Machine Learning in Interpolation and Extrapolation for Nanophotonic Inverse Design
[Image: see text] The algorithmic design of nanophotonic structures promises to significantly improve the efficiency of nanophotonic components due to the strong dependence of electromagnetic function on geometry and the unintuitive connection between structure and response. Such approaches, however...
Autores principales: | Acharige, Didulani, Johlin, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494689/ https://www.ncbi.nlm.nih.gov/pubmed/36157720 http://dx.doi.org/10.1021/acsomega.2c04526 |
Ejemplares similares
-
Interpolation and extrapolation optimal designs
por: Celant, Giorgio, et al.
Publicado: (2017) -
Interpolation and extrapolation optimal designs
por: Celant, Giorgio, et al.
Publicado: (2016) -
Nanophotonic color splitters for high-efficiency imaging
por: Johlin, Eric
Publicado: (2021) -
Fabrication-constrained nanophotonic inverse design
por: Piggott, Alexander Y., et al.
Publicado: (2017) -
Broadband highly directive 3D nanophotonic lenses
por: Johlin, Eric, et al.
Publicado: (2018)