Cargando…

Cell-Based Microfluidic Device Utilizing Cell Sheet Technology

The development of microelectromechanical systems has resulted in the rapid development of polydimethylpolysiloxane (PDMS) microfluidic devices for drug screening models. Various cell functions, such as the response of endothelial cells to fluids, have been elucidated using microfluidic devices. Add...

Descripción completa

Detalles Bibliográficos
Autores principales: Sakaguchi, Katsuhisa, Akimoto, Kei, Takaira, Masanori, Tanaka, Ryu-ichiro, Shimizu, Tatsuya, Umezu, Shinjiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494697/
https://www.ncbi.nlm.nih.gov/pubmed/36285307
http://dx.doi.org/10.34133/2022/9758187
Descripción
Sumario:The development of microelectromechanical systems has resulted in the rapid development of polydimethylpolysiloxane (PDMS) microfluidic devices for drug screening models. Various cell functions, such as the response of endothelial cells to fluids, have been elucidated using microfluidic devices. Additionally, organ-on-a-chip systems that include organs that are important for biological circulation, such as the heart, liver, pancreas, kidneys, and brain, have been developed. These organs realize the biological circulation system in a manner that cannot be reproduced by artificial organs; however, the flow channels between the organs are often artificially created by PDMS. In this study, we developed a microfluidic device consisting only of cells, by combining cell sheet technology with microtitanium wires. Microwires were placed between stacked fibroblast cell sheets, and the cell sheets adhered to each other, after which the microwires were removed leaving a luminal structure with a size approximately equal to the arteriolar size. The lumen structure was constructed using wires with diameters of 50, 100, 150, and 200 μm, which were approximations of the arteriole diameters. Furthermore, using a perfusion device, we successfully perfused the luminal structure created inside the cell sheets. The results revealed that a culture solution can be supplied to a cell sheet with a very high cell density. The biofabrication technology proposed in this study can contribute to the development of organ-on-a-chip systems.