Cargando…

Recent Progress of Magnetically Actuated DNA Micro/Nanorobots

In the past few decades, the field of DNA origami-based micro/nanotechnology has developed dramatically and spawned attention increasingly, as its high integrality, rigid structure, and excellent resistance ability to enzyme digestion. Many two-dimensional and three-dimensional DNA nanostructures co...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Fengyu, Liu, Xiaoming, Huang, Qiang, Arai, Tatsuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AAAS 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494703/
https://www.ncbi.nlm.nih.gov/pubmed/36285315
http://dx.doi.org/10.34133/2022/9758460
Descripción
Sumario:In the past few decades, the field of DNA origami-based micro/nanotechnology has developed dramatically and spawned attention increasingly, as its high integrality, rigid structure, and excellent resistance ability to enzyme digestion. Many two-dimensional and three-dimensional DNA nanostructures coordinated with optical, chemical, or magnetic triggers have been designed and assembled, extensively used as versatile templates for molecular robots, nanosensors, and intracellular drug delivery. The magnetic field has been widely regarded as an ideal driving and operating system for micro/nanomaterials, as it does not require high-intensity lasers like light control, nor does it need to change the chemical composition similar to chemical activation. Herein, we review the recent achievements in the induction and actuation of DNA origami-based nanodevices that respond to magnetic fields. These magnetic actuation-based DNA nanodevices were regularly combined with magnetic beads or gold nanoparticles and applied to generate single-stranded scaffolds, assemble various DNA nanostructures, and purify specific DNA nanostructures. Moreover, they also produced artificial magnetism or moved regularly driven by external magnetic fields to explain deeper scientific issues.