Cargando…
Application Research on Optimization Algorithm of sEMG Gesture Recognition Based on Light CNN+LSTM Model
The deep learning gesture recognition based on surface electromyography plays an increasingly important role in human-computer interaction. In order to ensure the high accuracy of deep learning in multistate muscle action recognition and ensure that the training model can be applied in the embedded...
Autores principales: | Bai, Dianchun, Liu, Tie, Han, Xinghua, Yi, Hongyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AAAS
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494710/ https://www.ncbi.nlm.nih.gov/pubmed/36285146 http://dx.doi.org/10.34133/2021/9794610 |
Ejemplares similares
-
A novel attention-based hybrid CNN-RNN architecture for sEMG-based gesture recognition
por: Hu, Yu, et al.
Publicado: (2018) -
Selection of the Best Set of Features for sEMG-Based Hand Gesture Recognition Applying a CNN Architecture
por: Sandoval-Espino, Jorge Arturo, et al.
Publicado: (2022) -
Upper Arm Motion High-Density sEMG Recognition Optimization Based on Spatial and Time-Frequency Domain Features
por: Bai, Dianchun, et al.
Publicado: (2019) -
Multi-Category Gesture Recognition Modeling Based on sEMG and IMU Signals
por: Jiang, Yujian, et al.
Publicado: (2022) -
sEMG-Based Hand Gesture Recognition Using Binarized Neural Network
por: Kang, Soongyu, et al.
Publicado: (2023)