Cargando…
Evaluation of classification in single cell atac-seq data with machine learning methods
BACKGROUND: The technologies advances of single-cell Assay for Transposase Accessible Chromatin using sequencing (scATAC-seq) allowed to generate thousands of single cells in a relatively easy and economic manner and it is rapidly advancing the understanding of the cellular composition of complex or...
Autores principales: | Guo, Hongzhe, Yang, Zhongbo, Jiang, Tao, Liu, Shiqi, Wang, Yadong, Cui, Zhe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494763/ https://www.ncbi.nlm.nih.gov/pubmed/36131234 http://dx.doi.org/10.1186/s12859-022-04774-z |
Ejemplares similares
-
Enhancement and Imputation of Peak Signal Enables Accurate Cell-Type Classification in scATAC-seq
por: Cui, Zhe, et al.
Publicado: (2021) -
Comprehensive analysis of single cell ATAC-seq data with SnapATAC
por: Fang, Rongxin, et al.
Publicado: (2021) -
CoRE-ATAC: A deep learning model for the functional classification of regulatory elements from single cell and bulk ATAC-seq data
por: Thibodeau, Asa, et al.
Publicado: (2021) -
Assessment of computational methods for the analysis of single-cell ATAC-seq data
por: Chen, Huidong, et al.
Publicado: (2019) -
simATAC: a single-cell ATAC-seq simulation framework
por: Navidi, Zeinab, et al.
Publicado: (2021)