Cargando…

Determination of Thermal, Chemical and Physical Properties of Bedding Materials for Compost Dairy Barns

SIMPLE SUMMARY: Among animal facilities, compost-bedded pack (CBP) barns have attracted a lot of attention from milk producers and the scientific community. Systematic investigation of the main thermal, chemical, and physical properties of bedding materials in CBP barns is of environmental and econo...

Descripción completa

Detalles Bibliográficos
Autores principales: Damasceno, Flávio Alves, Day, George B., Taraba, Joseph L., Barbari, Matteo, Oliveira, Carlos Eduardo Alves, Frigeri, Karen Dal Magro, Vieira, Frederico Márcio Corrêa, Bambi, Gianluca
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495096/
https://www.ncbi.nlm.nih.gov/pubmed/36139313
http://dx.doi.org/10.3390/ani12182450
Descripción
Sumario:SIMPLE SUMMARY: Among animal facilities, compost-bedded pack (CBP) barns have attracted a lot of attention from milk producers and the scientific community. Systematic investigation of the main thermal, chemical, and physical properties of bedding materials in CBP barns is of environmental and economic relevance, helping dairy producers operate these beds properly. Here we assessed 42 CBPs in the state of Kentucky (USA), aiming to study the thermal, chemical, and physical properties of bedding materials. We found that thermal conductivity increased with increasing particle size. Regarding chemical features, the assessed CBPs were similar when considering the bedding materials. The particle weight fraction found in CBPs might result in excessive water retention and low aeration. Based on these main results, we concluded that many dairy producers could use the bedding compost to fertilize their crop fields and avoid over-applying nutrients, and reduce water pollution. ABSTRACT: The thermal, chemical, and physical properties of compost bedding materials play an important role in every phase of compost production. Based on this, we aimed to assess the thermal, chemical and physical properties of bedding materials for compost-bedded pack (CBP) barns. The database for this study was registered from 42 CBP barns, distributed throughout the state of Kentucky (USA). The thermal conductivity showed a linear relationship with moisture content and bulk density, while thermal resistivity decreased with increasing particle size. The bedding moisture average was 46.8% (±11.5). The average finer index (p < 0.05) was the highest weight percentage (30.1%) in the samples studied. Water-holding capacity (WHC) increased with increasingly fine particle size. The higher bulk density value was 3.6 times that of the lowest bulk density value. The chemical characterization of the bedding material provided the following results: 42.7% (±3.8%) C, 1.6% (±0.4%) N, and 28.2 (±8.0) C:N ratio. However, thermal properties are strongly dependent on particle size. Producers can use the bedding material as fertilizer in their crops, due to the chemical characteristics of the materials. Beds with good physical and chemical properties improve their moisture content.