Cargando…
Effects of Sulfamethoxazole on Fertilization and Embryo Development in the Arbacia lixula Sea Urchin
SIMPLE SUMMARY: Drugs released into the aquatic environment create serious problems for the organisms that live there. For this reason, the present study investigates the in vitro effects of the antibiotic sulfamethoxazole, widely found in wastewater, on the fertilization and development of the Arba...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495157/ https://www.ncbi.nlm.nih.gov/pubmed/36139342 http://dx.doi.org/10.3390/ani12182483 |
Sumario: | SIMPLE SUMMARY: Drugs released into the aquatic environment create serious problems for the organisms that live there. For this reason, the present study investigates the in vitro effects of the antibiotic sulfamethoxazole, widely found in wastewater, on the fertilization and development of the Arbacia lixula sea urchin. The results showed a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations, together with an increase in anomalies and delays in the development of the embryo. Therefore, the data obtained suggest urgent intervention on the release of these drugs in order to prevent important alterations in the species’ development and to preserve biodiversity. ABSTRACT: To date, drugs released into the aquatic environment are a real problem, and among antibiotics, sulfamethoxazole is the one most widely found in wastewater; thus, the evaluation of its toxicity on marine organisms is very important. This study, for the first time, investigates the in vitro effects of 4 concentrations of sulfamethoxazole (0.05 mg/L, 0.5 mg/L, 5 mg/L, 50 mg/L) on the fertilization and development of the sea urchin Arbacia lixula. The gametes were exposed to drugs in three different stages: simultaneously with, prior to, and post-fertilization. The results show a significant reduction in the percentage of fertilized oocytes at the highest drug concentrations. Moreover, an increase in anomalies and delays in embryo development following the treatment with the drug was demonstrated. Therefore, the data suggest that this antibiotic can alter the development of marine organisms, making it urgent to act to reduce their release and to determine the concentration range with the greatest impact. |
---|