Cargando…
Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere
Antibiotic resistance spread must be considered in a holistic framework which comprises the agri-food ecosystems, where plants can be considered a bridge connecting water and soil habitats with the human microbiome. However, the study of horizontal gene transfer events within the plant microbiome is...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495178/ https://www.ncbi.nlm.nih.gov/pubmed/36140010 http://dx.doi.org/10.3390/antibiotics11091231 |
_version_ | 1784793960797962240 |
---|---|
author | Riva, Valentina Patania, Giovanni Riva, Francesco Vergani, Lorenzo Crotti, Elena Mapelli, Francesca |
author_facet | Riva, Valentina Patania, Giovanni Riva, Francesco Vergani, Lorenzo Crotti, Elena Mapelli, Francesca |
author_sort | Riva, Valentina |
collection | PubMed |
description | Antibiotic resistance spread must be considered in a holistic framework which comprises the agri-food ecosystems, where plants can be considered a bridge connecting water and soil habitats with the human microbiome. However, the study of horizontal gene transfer events within the plant microbiome is still overlooked. Here, the environmental strain Acinetobacter baylyi BD413 was used to study the acquisition of extracellular DNA (exDNA) carrying an antibiotic resistance gene (ARG) on lettuce phylloplane, performing experiments at conditions (i.e., plasmid quantities) mimicking those that can be found in a water reuse scenario. Moreover, we assessed how the presence of a surfactant, a co-formulant widely used in agriculture, affected exDNA entry in bacteria and plant tissues, besides the penetration and survival of bacteria into the leaf endosphere. Natural transformation frequency in planta was comparable to that occurring under optimal conditions (i.e., temperature, nutrient provision, and absence of microbial competitors), representing an entrance pathway of ARGs into an epiphytic bacterium able to penetrate the endosphere of a leafy vegetable. The presence of the surfactant determined a higher presence of culturable transformant cells in the leaf tissues but did not significantly increase exDNA entry in A. baylyi BD413 cells and lettuce leaves. More research on HGT (Horizontal Gene Transfer) mechanisms in planta should be performed to obtain experimental data on produce safety in terms of antibiotic resistance. |
format | Online Article Text |
id | pubmed-9495178 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94951782022-09-23 Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere Riva, Valentina Patania, Giovanni Riva, Francesco Vergani, Lorenzo Crotti, Elena Mapelli, Francesca Antibiotics (Basel) Article Antibiotic resistance spread must be considered in a holistic framework which comprises the agri-food ecosystems, where plants can be considered a bridge connecting water and soil habitats with the human microbiome. However, the study of horizontal gene transfer events within the plant microbiome is still overlooked. Here, the environmental strain Acinetobacter baylyi BD413 was used to study the acquisition of extracellular DNA (exDNA) carrying an antibiotic resistance gene (ARG) on lettuce phylloplane, performing experiments at conditions (i.e., plasmid quantities) mimicking those that can be found in a water reuse scenario. Moreover, we assessed how the presence of a surfactant, a co-formulant widely used in agriculture, affected exDNA entry in bacteria and plant tissues, besides the penetration and survival of bacteria into the leaf endosphere. Natural transformation frequency in planta was comparable to that occurring under optimal conditions (i.e., temperature, nutrient provision, and absence of microbial competitors), representing an entrance pathway of ARGs into an epiphytic bacterium able to penetrate the endosphere of a leafy vegetable. The presence of the surfactant determined a higher presence of culturable transformant cells in the leaf tissues but did not significantly increase exDNA entry in A. baylyi BD413 cells and lettuce leaves. More research on HGT (Horizontal Gene Transfer) mechanisms in planta should be performed to obtain experimental data on produce safety in terms of antibiotic resistance. MDPI 2022-09-10 /pmc/articles/PMC9495178/ /pubmed/36140010 http://dx.doi.org/10.3390/antibiotics11091231 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Riva, Valentina Patania, Giovanni Riva, Francesco Vergani, Lorenzo Crotti, Elena Mapelli, Francesca Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere |
title | Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere |
title_full | Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere |
title_fullStr | Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere |
title_full_unstemmed | Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere |
title_short | Acinetobacter baylyi Strain BD413 Can Acquire an Antibiotic Resistance Gene by Natural Transformation on Lettuce Phylloplane and Enter the Endosphere |
title_sort | acinetobacter baylyi strain bd413 can acquire an antibiotic resistance gene by natural transformation on lettuce phylloplane and enter the endosphere |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495178/ https://www.ncbi.nlm.nih.gov/pubmed/36140010 http://dx.doi.org/10.3390/antibiotics11091231 |
work_keys_str_mv | AT rivavalentina acinetobacterbaylyistrainbd413canacquireanantibioticresistancegenebynaturaltransformationonlettucephylloplaneandentertheendosphere AT pataniagiovanni acinetobacterbaylyistrainbd413canacquireanantibioticresistancegenebynaturaltransformationonlettucephylloplaneandentertheendosphere AT rivafrancesco acinetobacterbaylyistrainbd413canacquireanantibioticresistancegenebynaturaltransformationonlettucephylloplaneandentertheendosphere AT verganilorenzo acinetobacterbaylyistrainbd413canacquireanantibioticresistancegenebynaturaltransformationonlettucephylloplaneandentertheendosphere AT crottielena acinetobacterbaylyistrainbd413canacquireanantibioticresistancegenebynaturaltransformationonlettucephylloplaneandentertheendosphere AT mapellifrancesca acinetobacterbaylyistrainbd413canacquireanantibioticresistancegenebynaturaltransformationonlettucephylloplaneandentertheendosphere |