Cargando…
Two-Dimensional Convolutional Neural Network for Depression Episodes Detection in Real Time Using Motor Activity Time Series of Depresjon Dataset
Depression is a common illness worldwide, affecting an estimated 3.8% of the population, including 5% of all adults, in particular, 5.7% of adults over 60 years of age. Unfortunately, at present, the ways to evaluate different mental disorders, like the Montgomery–Åsberg depression rating scale (MAD...
Autores principales: | Espino-Salinas, Carlos H., Galván-Tejada, Carlos E., Luna-García, Huizilopoztli, Gamboa-Rosales, Hamurabi, Celaya-Padilla, José M., Zanella-Calzada, Laura A., Tejada, Jorge I. Galván |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495338/ https://www.ncbi.nlm.nih.gov/pubmed/36135004 http://dx.doi.org/10.3390/bioengineering9090458 |
Ejemplares similares
-
Classification of Depressive and Schizophrenic Episodes Using Night-Time Motor Activity Signal
por: Rodríguez-Ruiz, Julieta G., et al.
Publicado: (2022) -
Comparison of Night, Day and 24 h Motor Activity Data for the Classification of Depressive Episodes
por: Rodríguez-Ruiz, Julieta G., et al.
Publicado: (2020) -
Demographic and Comorbidities Data Description of Population in Mexico with SARS-CoV-2 Infected Patients(COVID19): An Online Tool Analysis
por: Galván-Tejada, Carlos E., et al.
Publicado: (2020) -
Univariate Analysis of Short-Chain Fatty Acids Related to Sudden Infant Death Syndrome
por: Galván-Tejada, Carlos E., et al.
Publicado: (2020) -
Feature Extraction in Motor Activity Signal: Towards a Depression Episodes Detection in Unipolar and Bipolar Patients
por: Zanella-Calzada, Laura A., et al.
Publicado: (2019)