Cargando…
NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM
Nuclei identification is a fundamental task in many areas of biomedical image analysis related to computational pathology applications. Nowadays, deep learning is the primary approach by which to segment the nuclei, but accuracy is closely linked to the amount of histological ground truth data for t...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495364/ https://www.ncbi.nlm.nih.gov/pubmed/36135021 http://dx.doi.org/10.3390/bioengineering9090475 |
_version_ | 1784793999678111744 |
---|---|
author | Altini, Nicola Brunetti, Antonio Puro, Emilia Taccogna, Maria Giovanna Saponaro, Concetta Zito, Francesco Alfredo De Summa, Simona Bevilacqua, Vitoantonio |
author_facet | Altini, Nicola Brunetti, Antonio Puro, Emilia Taccogna, Maria Giovanna Saponaro, Concetta Zito, Francesco Alfredo De Summa, Simona Bevilacqua, Vitoantonio |
author_sort | Altini, Nicola |
collection | PubMed |
description | Nuclei identification is a fundamental task in many areas of biomedical image analysis related to computational pathology applications. Nowadays, deep learning is the primary approach by which to segment the nuclei, but accuracy is closely linked to the amount of histological ground truth data for training. In addition, it is known that most of the hematoxylin and eosin (H&E)-stained microscopy nuclei images contain complex and irregular visual characteristics. Moreover, conventional semantic segmentation architectures grounded on convolutional neural networks (CNNs) are unable to recognize distinct overlapping and clustered nuclei. To overcome these problems, we present an innovative method based on gradient-weighted class activation mapping (Grad-CAM) saliency maps for image segmentation. The proposed solution is comprised of two steps. The first is the semantic segmentation obtained by the use of a CNN; then, the detection step is based on the calculation of local maxima of the Grad-CAM analysis evaluated on the nucleus class, allowing us to determine the positions of the nuclei centroids. This approach, which we denote as NDG-CAM, has performance in line with state-of-the-art methods, especially in isolating the different nuclei instances, and can be generalized for different organs and tissues. Experimental results demonstrated a precision of 0.833, recall of 0.815 and a Dice coefficient of 0.824 on the publicly available validation set. When used in combined mode with instance segmentation architectures such as Mask R-CNN, the method manages to surpass state-of-the-art approaches, with precision of 0.838, recall of 0.934 and a Dice coefficient of 0.884. Furthermore, performance on the external, locally collected validation set, with a Dice coefficient of 0.914 for the combined model, shows the generalization capability of the implemented pipeline, which has the ability to detect nuclei not only related to tumor or normal epithelium but also to other cytotypes. |
format | Online Article Text |
id | pubmed-9495364 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94953642022-09-23 NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM Altini, Nicola Brunetti, Antonio Puro, Emilia Taccogna, Maria Giovanna Saponaro, Concetta Zito, Francesco Alfredo De Summa, Simona Bevilacqua, Vitoantonio Bioengineering (Basel) Article Nuclei identification is a fundamental task in many areas of biomedical image analysis related to computational pathology applications. Nowadays, deep learning is the primary approach by which to segment the nuclei, but accuracy is closely linked to the amount of histological ground truth data for training. In addition, it is known that most of the hematoxylin and eosin (H&E)-stained microscopy nuclei images contain complex and irregular visual characteristics. Moreover, conventional semantic segmentation architectures grounded on convolutional neural networks (CNNs) are unable to recognize distinct overlapping and clustered nuclei. To overcome these problems, we present an innovative method based on gradient-weighted class activation mapping (Grad-CAM) saliency maps for image segmentation. The proposed solution is comprised of two steps. The first is the semantic segmentation obtained by the use of a CNN; then, the detection step is based on the calculation of local maxima of the Grad-CAM analysis evaluated on the nucleus class, allowing us to determine the positions of the nuclei centroids. This approach, which we denote as NDG-CAM, has performance in line with state-of-the-art methods, especially in isolating the different nuclei instances, and can be generalized for different organs and tissues. Experimental results demonstrated a precision of 0.833, recall of 0.815 and a Dice coefficient of 0.824 on the publicly available validation set. When used in combined mode with instance segmentation architectures such as Mask R-CNN, the method manages to surpass state-of-the-art approaches, with precision of 0.838, recall of 0.934 and a Dice coefficient of 0.884. Furthermore, performance on the external, locally collected validation set, with a Dice coefficient of 0.914 for the combined model, shows the generalization capability of the implemented pipeline, which has the ability to detect nuclei not only related to tumor or normal epithelium but also to other cytotypes. MDPI 2022-09-15 /pmc/articles/PMC9495364/ /pubmed/36135021 http://dx.doi.org/10.3390/bioengineering9090475 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Altini, Nicola Brunetti, Antonio Puro, Emilia Taccogna, Maria Giovanna Saponaro, Concetta Zito, Francesco Alfredo De Summa, Simona Bevilacqua, Vitoantonio NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM |
title | NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM |
title_full | NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM |
title_fullStr | NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM |
title_full_unstemmed | NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM |
title_short | NDG-CAM: Nuclei Detection in Histopathology Images with Semantic Segmentation Networks and Grad-CAM |
title_sort | ndg-cam: nuclei detection in histopathology images with semantic segmentation networks and grad-cam |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495364/ https://www.ncbi.nlm.nih.gov/pubmed/36135021 http://dx.doi.org/10.3390/bioengineering9090475 |
work_keys_str_mv | AT altininicola ndgcamnucleidetectioninhistopathologyimageswithsemanticsegmentationnetworksandgradcam AT brunettiantonio ndgcamnucleidetectioninhistopathologyimageswithsemanticsegmentationnetworksandgradcam AT puroemilia ndgcamnucleidetectioninhistopathologyimageswithsemanticsegmentationnetworksandgradcam AT taccognamariagiovanna ndgcamnucleidetectioninhistopathologyimageswithsemanticsegmentationnetworksandgradcam AT saponaroconcetta ndgcamnucleidetectioninhistopathologyimageswithsemanticsegmentationnetworksandgradcam AT zitofrancescoalfredo ndgcamnucleidetectioninhistopathologyimageswithsemanticsegmentationnetworksandgradcam AT desummasimona ndgcamnucleidetectioninhistopathologyimageswithsemanticsegmentationnetworksandgradcam AT bevilacquavitoantonio ndgcamnucleidetectioninhistopathologyimageswithsemanticsegmentationnetworksandgradcam |