Cargando…
Integrating multimodal data through interpretable heterogeneous ensembles
MOTIVATION: Integrating multimodal data represents an effective approach to predicting biomedical characteristics, such as protein functions and disease outcomes. However, existing data integration approaches do not sufficiently address the heterogeneous semantics of multimodal data. In particular,...
Autores principales: | Li, Yan Chak, Wang, Linhua, Law, Jeffrey N, Murali, T M, Pandey, Gaurav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495448/ https://www.ncbi.nlm.nih.gov/pubmed/36158455 http://dx.doi.org/10.1093/bioadv/vbac065 |
Ejemplares similares
-
Integrating multimodal data through interpretable heterogeneous ensembles
por: Li, Yan Chak, et al.
Publicado: (2022) -
Large-scale protein function prediction using heterogeneous ensembles
por: Wang, Linhua, et al.
Publicado: (2018) -
MMDD-Ensemble: A Multimodal Data–Driven Ensemble Approach for Parkinson's Disease Detection
por: Ali, Liaqat, et al.
Publicado: (2021) -
Reliable Identification and Interpretation of Single‐Cell Molecular Heterogeneity and Transcriptional Regulation using Dynamic Ensemble Pruning
por: Fan, Yi, et al.
Publicado: (2023) -
Effects of ensemble and summary displays on interpretations of geospatial uncertainty data
por: Padilla, Lace M., et al.
Publicado: (2017)