Cargando…
End-to-End Convolutional Neural Network Model to Detect and Localize Myocardial Infarction Using 12-Lead ECG Images without Preprocessing
In recent years, many studies have proposed automatic detection and localization techniques for myocardial infarction (MI) using the 12-lead electrocardiogram (ECG). Most of them applied preprocessing to the ECG signals, e.g., noise removal, trend removal, beat segmentation, and feature selection, f...
Autores principales: | Uchiyama, Ryunosuke, Okada, Yoshifumi, Kakizaki, Ryuya, Tomioka, Sekito |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495488/ https://www.ncbi.nlm.nih.gov/pubmed/36134976 http://dx.doi.org/10.3390/bioengineering9090430 |
Ejemplares similares
-
End-to-End Depression Recognition Based on a One-Dimensional Convolution Neural Network Model Using Two-Lead ECG Signal
por: Zang, Xiaohan, et al.
Publicado: (2022) -
Automatic Triage of 12‐Lead ECGs Using Deep Convolutional Neural Networks
por: van de Leur, Rutger R., et al.
Publicado: (2020) -
Role of 12 lead ECG Q-waves as a marker of myocardial infarction in the era of cardiac magnetic resonance
por: Dastidar, Amardeep Ghosh, et al.
Publicado: (2016) -
Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction
por: Makimoto, Hisaki, et al.
Publicado: (2020) -
Classification of Depression and Its Severity Based on Multiple Audio Features Using a Graphical Convolutional Neural Network
por: Ishimaru, Momoko, et al.
Publicado: (2023)