Cargando…

Sulfane Sulfur Is an Intrinsic Signal for the Organic Peroxide Sensor OhrR of Pseudomonas aeruginosa

Sulfane sulfur, including organic persulfide and polysulfide, is a normal cellular component, and its level varies during growth. It is emerging as a signaling molecule in bacteria, regulating the gene regulator MarR in Escherichia coli, MexR in Pseudomonas aeruginosa, and MgrA of Staphylococcus aur...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Huangwei, Xuan, Guanhua, Liu, Huaiwei, Liu, Honglei, Xia, Yongzhen, Xun, Luying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495516/
https://www.ncbi.nlm.nih.gov/pubmed/36139741
http://dx.doi.org/10.3390/antiox11091667
Descripción
Sumario:Sulfane sulfur, including organic persulfide and polysulfide, is a normal cellular component, and its level varies during growth. It is emerging as a signaling molecule in bacteria, regulating the gene regulator MarR in Escherichia coli, MexR in Pseudomonas aeruginosa, and MgrA of Staphylococcus aureus. They are MarR-family regulators and are often repressors for multiple antibiotic resistance genes. Here, we report that another MarR-type regulator OhrR that represses the expression of itself and a thiol peroxidase gene ohr in P. aeruginosa PAO1 also responded to sulfane sulfur. PaOhrR formed disulfide bonds between three Cys residues within a dimer after polysulfide treatment. The modification reduced its affinity to its cognate DNA binding site. An Escherichia coli reporter system, in which mKate was under the repression of OhrR, showed that PaOhrR derepressed its controlled gene when polysulfide was added, whereas the mutant PaOhrR with two Cys residues changed to Ser residues did not respond to polysulfide. The expression of the PaOhrR-repressed mKate was significantly increased when the cells enter the late log phase when cellular sulfane sulfur reached a maximum, but the mKate expression under the control of the PaOhrR-C9SC19S double mutant was not increased. Furthermore, the expression levels of ohrR and ohr in P. aeruginosa PAO1 were significantly increased when cellular sulfane sulfur was high. Thus, PaOhrR senses both exogenous and intrinsic sulfane sulfur to derepress its controlled genes. The finding also suggests that sulfane sulfur may be a common inducer of the MarR-type regulators, which may confer the bacteria to resist certain stresses without being exposed to the stresses.