Cargando…
Integrating Expression Data-Based Deep Neural Network Models with Biological Networks to Identify Regulatory Modules for Lung Adenocarcinoma
SIMPLE SUMMARY: The growing evidence suggested that competing endogenous RNAs (ceRNAs) have significant associations with tumor occurrence and progression, yet the regulatory mechanism of them in lung adenocarcinoma remains unclear. Identification of the regulatory modules for lung adenocarcinoma is...
Autores principales: | Fu, Lei, Luo, Kai, Lv, Junjie, Wang, Xinyan, Qin, Shimei, Zhang, Zihan, Sun, Shibin, Wang, Xu, Yun, Bei, He, Yuehan, He, Weiming, Li, Wan, Chen, Lina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495551/ https://www.ncbi.nlm.nih.gov/pubmed/36138770 http://dx.doi.org/10.3390/biology11091291 |
Ejemplares similares
-
Deep neural network for discovering metabolism-related biomarkers for lung adenocarcinoma
por: Fu, Lei, et al.
Publicado: (2023) -
Guiding Drug Repositioning for Cancers Based on Drug Similarity Networks
por: Qin, Shimei, et al.
Publicado: (2023) -
Identification of key genes and therapeutic drugs for cocaine addiction using integrated bioinformatics analysis
por: Wang, Xu, et al.
Publicado: (2023) -
Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks
por: Chen, Lina, et al.
Publicado: (2010) -
Identification of cardiomyopathy-related core genes through human metabolic networks and expression data
por: Rong, Zherou, et al.
Publicado: (2022)