Cargando…
Drug Discovery Strategies for Inherited Retinal Degenerations
SIMPLE SUMMARY: Inherited retinal degeneration is a group of heterogeneous genetic disorders impairing vision. In these diseases, photoreceptor or retinal ganglion cells become dysfunctional and degenerate. Currently, no cures exist for these devastating blinding conditions. In this review, we will...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495580/ https://www.ncbi.nlm.nih.gov/pubmed/36138817 http://dx.doi.org/10.3390/biology11091338 |
Sumario: | SIMPLE SUMMARY: Inherited retinal degeneration is a group of heterogeneous genetic disorders impairing vision. In these diseases, photoreceptor or retinal ganglion cells become dysfunctional and degenerate. Currently, no cures exist for these devastating blinding conditions. In this review, we will discuss targets and drug discovery strategies for inherited retinal degeneration using animal models, stem cells, and small molecule screening with updates on preclinical developments. ABSTRACT: Inherited retinal degeneration is a group of blinding disorders afflicting more than 1 in 4000 worldwide. These disorders frequently cause the death of photoreceptor cells or retinal ganglion cells. In a subset of these disorders, photoreceptor cell death is a secondary consequence of retinal pigment epithelial cell dysfunction or degeneration. This manuscript reviews current efforts in identifying targets and developing small molecule-based therapies for these devastating neuronal degenerations, for which no cures exist. Photoreceptors and retinal ganglion cells are metabolically demanding owing to their unique structures and functional properties. Modulations of metabolic pathways, which are disrupted in most inherited retinal degenerations, serve as promising therapeutic strategies. In monogenic disorders, great insights were previously obtained regarding targets associated with the defective pathways, including phototransduction, visual cycle, and mitophagy. In addition to these target-based drug discoveries, we will discuss how phenotypic screening can be harnessed to discover beneficial molecules without prior knowledge of their mechanisms of action. Because of major anatomical and biological differences, it has frequently been challenging to model human inherited retinal degeneration conditions using small animals such as rodents. Recent advances in stem cell-based techniques are opening new avenues to obtain pure populations of human retinal ganglion cells and retinal organoids with photoreceptor cells. We will discuss concurrent ideas of utilizing stem-cell-based disease models for drug discovery and preclinical development. |
---|