Cargando…
Development and Evaluation of a Novel Deep-Learning-Based Framework for the Classification of Renal Histopathology Images
Kidney cancer has several types, with renal cell carcinoma (RCC) being the most prevalent and severe type, accounting for more than 85% of adult patients. The manual analysis of whole slide images (WSI) of renal tissues is the primary tool for RCC diagnosis and prognosis. However, the manual identif...
Autores principales: | Abu Haeyeh, Yasmine, Ghazal, Mohammed, El-Baz, Ayman, Talaat, Iman M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495730/ https://www.ncbi.nlm.nih.gov/pubmed/36134972 http://dx.doi.org/10.3390/bioengineering9090423 |
Ejemplares similares
-
A deep learning framework for automated classification of histopathological kidney whole-slide images
por: Abdeltawab, Hisham A., et al.
Publicado: (2022) -
A pyramidal deep learning pipeline for kidney whole-slide histology images classification
por: Abdeltawab, Hisham, et al.
Publicado: (2021) -
Multi-Stage Classification-Based Deep Learning for Gleason System Grading Using Histopathological Images
por: Hammouda, Kamal, et al.
Publicado: (2022) -
Author Correction: A pyramidal deep learning pipeline for kidney whole-slide histology images classification
por: Abdeltawab, Hisham, et al.
Publicado: (2021) -
A Deep-Learning Framework for the Detection of Oil Spills from SAR Data
por: Shaban, Mohamed, et al.
Publicado: (2021)