Cargando…
Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease
Alzheimer’s disease (AD) is a complex multi-factorial neurodegenerative disorder for which only few drugs (including donepezil, DPZ) are available as symptomatic treatments; thus, researchers are focusing on the development of innovative multi-target directed ligands (MTDLs), which could also alter...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495854/ https://www.ncbi.nlm.nih.gov/pubmed/36139705 http://dx.doi.org/10.3390/antiox11091631 |
_version_ | 1784794124672565248 |
---|---|
author | Carocci, Alessia Barbarossa, Alexia Leuci, Rosalba Carrieri, Antonio Brunetti, Leonardo Laghezza, Antonio Catto, Marco Limongelli, Francesco Chaves, Sílvia Tortorella, Paolo Altomare, Cosimo Damiano Santos, Maria Amélia Loiodice, Fulvio Piemontese, Luca |
author_facet | Carocci, Alessia Barbarossa, Alexia Leuci, Rosalba Carrieri, Antonio Brunetti, Leonardo Laghezza, Antonio Catto, Marco Limongelli, Francesco Chaves, Sílvia Tortorella, Paolo Altomare, Cosimo Damiano Santos, Maria Amélia Loiodice, Fulvio Piemontese, Luca |
author_sort | Carocci, Alessia |
collection | PubMed |
description | Alzheimer’s disease (AD) is a complex multi-factorial neurodegenerative disorder for which only few drugs (including donepezil, DPZ) are available as symptomatic treatments; thus, researchers are focusing on the development of innovative multi-target directed ligands (MTDLs), which could also alter the course of the disease. Among other pathological factors, oxidative stress has emerged as an important factor in AD that could affect several pathways involved in the onset and progression of the pathology. Herein, we propose a new series of hybrid molecules obtained by linking a phenothiazine moiety, known for its antioxidant properties, with N-benzylpiperidine or N-benzylpiperazine fragments, mimicking the core substructure of DPZ. The investigation of the resulting hybrids showed, in addition to their antioxidant properties, their activity against some AD-related targets, such as the inhibition of cholinesterases (both AChE and BChE) and in vitro Aβ(1-40) aggregation, as well as the inhibition of the innovative target fatty acid amide hydrolase (FAAH). Furthermore, the drug-likeness properties of these compounds were assessed using cheminformatic tools. Compounds 11d and 12d showed the most interesting multi-target profiles, with all the assayed activities in the low micromolar range. In silico docking calculations supported the obtained results. Compound 13, on the other hand, while inactive in the DPPH assay, showed the best results in the in vitro antioxidant cell assays conducted on both HepG2 and SHSY-5Y cell lines. These results, paired with the low or absent cytotoxicity of these compounds at tested concentrations, allow us to aim our future research at the study of novel and effective drugs and pro-drugs with similar structural characteristics. |
format | Online Article Text |
id | pubmed-9495854 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94958542022-09-23 Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease Carocci, Alessia Barbarossa, Alexia Leuci, Rosalba Carrieri, Antonio Brunetti, Leonardo Laghezza, Antonio Catto, Marco Limongelli, Francesco Chaves, Sílvia Tortorella, Paolo Altomare, Cosimo Damiano Santos, Maria Amélia Loiodice, Fulvio Piemontese, Luca Antioxidants (Basel) Article Alzheimer’s disease (AD) is a complex multi-factorial neurodegenerative disorder for which only few drugs (including donepezil, DPZ) are available as symptomatic treatments; thus, researchers are focusing on the development of innovative multi-target directed ligands (MTDLs), which could also alter the course of the disease. Among other pathological factors, oxidative stress has emerged as an important factor in AD that could affect several pathways involved in the onset and progression of the pathology. Herein, we propose a new series of hybrid molecules obtained by linking a phenothiazine moiety, known for its antioxidant properties, with N-benzylpiperidine or N-benzylpiperazine fragments, mimicking the core substructure of DPZ. The investigation of the resulting hybrids showed, in addition to their antioxidant properties, their activity against some AD-related targets, such as the inhibition of cholinesterases (both AChE and BChE) and in vitro Aβ(1-40) aggregation, as well as the inhibition of the innovative target fatty acid amide hydrolase (FAAH). Furthermore, the drug-likeness properties of these compounds were assessed using cheminformatic tools. Compounds 11d and 12d showed the most interesting multi-target profiles, with all the assayed activities in the low micromolar range. In silico docking calculations supported the obtained results. Compound 13, on the other hand, while inactive in the DPPH assay, showed the best results in the in vitro antioxidant cell assays conducted on both HepG2 and SHSY-5Y cell lines. These results, paired with the low or absent cytotoxicity of these compounds at tested concentrations, allow us to aim our future research at the study of novel and effective drugs and pro-drugs with similar structural characteristics. MDPI 2022-08-23 /pmc/articles/PMC9495854/ /pubmed/36139705 http://dx.doi.org/10.3390/antiox11091631 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Carocci, Alessia Barbarossa, Alexia Leuci, Rosalba Carrieri, Antonio Brunetti, Leonardo Laghezza, Antonio Catto, Marco Limongelli, Francesco Chaves, Sílvia Tortorella, Paolo Altomare, Cosimo Damiano Santos, Maria Amélia Loiodice, Fulvio Piemontese, Luca Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease |
title | Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease |
title_full | Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease |
title_fullStr | Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease |
title_full_unstemmed | Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease |
title_short | Novel Phenothiazine/Donepezil-like Hybrids Endowed with Antioxidant Activity for a Multi-Target Approach to the Therapy of Alzheimer’s Disease |
title_sort | novel phenothiazine/donepezil-like hybrids endowed with antioxidant activity for a multi-target approach to the therapy of alzheimer’s disease |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495854/ https://www.ncbi.nlm.nih.gov/pubmed/36139705 http://dx.doi.org/10.3390/antiox11091631 |
work_keys_str_mv | AT caroccialessia novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT barbarossaalexia novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT leucirosalba novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT carrieriantonio novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT brunettileonardo novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT laghezzaantonio novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT cattomarco novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT limongellifrancesco novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT chavessilvia novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT tortorellapaolo novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT altomarecosimodamiano novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT santosmariaamelia novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT loiodicefulvio novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease AT piemonteseluca novelphenothiazinedonepezillikehybridsendowedwithantioxidantactivityforamultitargetapproachtothetherapyofalzheimersdisease |