Cargando…
Bone Marrow Endothelial Cells Increase Prostate Cancer Cell Apoptosis in 3D Triculture Model of Reactive Stroma
SIMPLE SUMMARY: Prostate cancer (PCa) metastasizes preferentially to the bone marrow where it becomes difficult to treat. PCa cells in the bone marrow may survive, dormant and undetected for many years before patients eventually relapse with metastatic disease. Bone marrow is a complex tissue that i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9495890/ https://www.ncbi.nlm.nih.gov/pubmed/36138750 http://dx.doi.org/10.3390/biology11091271 |
Sumario: | SIMPLE SUMMARY: Prostate cancer (PCa) metastasizes preferentially to the bone marrow where it becomes difficult to treat. PCa cells in the bone marrow may survive, dormant and undetected for many years before patients eventually relapse with metastatic disease. Bone marrow is a complex tissue that initially is hostile to the PCa cells, Understanding how cancer cells survive in the bone marrow and what changes to the bone microenvironment permit them to switch to an actively growing state could offer new therapeutic strategies to combat metastatic PCa. In this study, we describe a method to culture PCa cells with two other cell types from the bone marrow, stromal cells and endothelial cells, as a way to study the interactions among these cell types. We found that factors produced by bone marrow endothelial cells, but not endothelial cells from other tissues, trigger PCa cells to either die or enter a dormant state, similar to what has been observed in patients when PCa cells initially colonize the bone marrow. Further analysis of the cell interactions within the culture model described in this study will offer increased understanding of PCa interaction with the bone marrow environment. ABSTRACT: The bone marrow tumor microenvironment (BMTE) is a complex network of cells, extracellular matrix, and sequestered signaling factors that initially act as a hostile environment for disseminating tumor cells (DTCs) from the cancerous prostate. Three-dimensional (3D) culture systems offer an opportunity to better model these complex interactions in reactive stroma, providing contextual behaviors for cancer cells, stromal cells, and endothelial cells. Using a new system designed for the triculture of osteoblastic prostate cancer (PCa) cells, stromal cells, and microvascular endothelial cells, we uncovered a context-specific pro-apoptotic effect of endothelial cells of the bone marrow different from those derived from the lung or dermis. The paracrine nature of this effect was demonstrated by observations that conditioned medium from bone marrow endothelial cells, but not from dermal or lung endothelial cells, led to PCa cell death in microtumors grown in 3D BMTE-simulating hydrogels. Analysis of the phosphoproteome by reverse phase protein analysis (RPPA) of PCa cells treated with conditioned media from different endothelial cells identified the differential regulation of pathways involved in proliferation, cell cycle regulation, and apoptosis. The findings from the RPPA were validated by western blotting for representative signaling factors identified, including forkhead box M1 (FOXM1; proliferation factor), pRb (cell cycle regulator), and Smac/DIABLO (pro-apoptosis) among treatment conditions. The 3D model presented here thus presents an accurate model to study the influence of the reactive BMTE, including stromal and endothelial cells, on the adaptive behaviors of cancer cells modeling DTCs at sites of bone metastasis. These findings in 3D culture systems can lead to a better understanding of the real-time interactions among cells present in reactive stroma than is possible using animal models. |
---|