Cargando…

Biosensing Dopamine and L-Epinephrine with Laccase (Trametes pubescens) Immobilized on a Gold Modified Electrode

Engineering electrode surfaces through the electrodeposition of gold may provide a range of advantages in the context of biosensor development, such as greatly enhanced surface area, improved conductivity and versatile functionalization. In this work we report on the development of an electrochemica...

Descripción completa

Detalles Bibliográficos
Autores principales: Pimpilova, Mariya, Kamarska, Kalina, Dimcheva, Nina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496072/
https://www.ncbi.nlm.nih.gov/pubmed/36140104
http://dx.doi.org/10.3390/bios12090719
Descripción
Sumario:Engineering electrode surfaces through the electrodeposition of gold may provide a range of advantages in the context of biosensor development, such as greatly enhanced surface area, improved conductivity and versatile functionalization. In this work we report on the development of an electrochemical biosensor for the laccase-catalyzed assay of two catecholamines—dopamine and L-epinephrine. Variety of electrochemical techniques—cyclic voltammetry, differential pulse voltammetry, electrochemical impedance spectroscopy and constant potential amperometry have been used in its characterization. It has been demonstrated that the laccase electrode is capable of sensing dopamine using two distinct techniques—differential pulse voltammetry and constant potential amperometry, the latter being suitable for the assay of L-epinephrine as well. The biosensor response to both catecholamines, examined by constant potential chronoamperometry over the potential range from 0.2 to −0.1 V (vs. Ag|AgCl, sat KCl) showed the highest electrode sensitivity at 0 and −0.1 V. The dependencies of the current density on either catecholamine’s concentration was found to follow the Michaelis—Menten kinetics with apparent constants K(M)(app) = 0.116 ± 0.015 mM for dopamine and K(M)(app) = 0.245 ± 0.031 mM for L-epinephrine and linear dynamic ranges spanning up to 0.10 mM and 0.20 mM, respectively. Calculated limits of detection for both analytes were found to be within the sub-micromolar concentration range. The biosensor applicability to the assay of dopamine concentration in a pharmaceutical product was demonstrated (with recovery rates between 99% and 106%, n = 3).