Cargando…

Dipeptidyl Peptidase 4 (DPP4) as A Novel Adipokine: Role in Metabolism and Fat Homeostasis

Dipeptidyl peptidase 4 (DPP4) is a molecule implicated in the regulation of metabolic homeostasis and inflammatory processes, and it exerts its main action through its enzymatic activity. DPP4 represents the enzyme most involved in the catabolism of incretin hormones; thus, its activity impacts appe...

Descripción completa

Detalles Bibliográficos
Autores principales: Barchetta, Ilaria, Cimini, Flavia Agata, Dule, Sara, Cavallo, Maria Gisella
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496088/
https://www.ncbi.nlm.nih.gov/pubmed/36140405
http://dx.doi.org/10.3390/biomedicines10092306
Descripción
Sumario:Dipeptidyl peptidase 4 (DPP4) is a molecule implicated in the regulation of metabolic homeostasis and inflammatory processes, and it exerts its main action through its enzymatic activity. DPP4 represents the enzyme most involved in the catabolism of incretin hormones; thus, its activity impacts appetite, energy balance, and the fine regulation of glucose homeostasis. Indeed, DPP4 inhibitors represent a class of antidiabetic agents widely used for the treatment of Type 2 diabetes mellitus (T2DM). DPP4 also acts as an adipokine and is mainly secreted by the adipose tissue, mostly from mature adipocytes of the visceral compartment, where it exerts autocrine and paracrine activities. DPP4 can disrupt insulin signaling within the adipocyte and in other target cells and tissues, where it also favors the development of a proinflammatory environment. This is likely at the basis of the presence of elevated circulating DPP4 levels in several metabolic diseases. In this review, we summarize the most recent evidence of the role of the DPP4 as an adipokine-regulating glucose/insulin metabolism and fat homeostasis, with a particular focus on clinical outcomes associated with its increased secretion in the presence of adipose tissue accumulation and dysfunction.