Cargando…

Crystallization Behavior and Morphology of Biodegradable Poly(ε-caprolactone)/Reduced Graphene Oxide Scaffolds

Morphology, thermal properties and the non-isothermal melt crystallization kinetics of biodegradable poly(ε-caprolactone) (PCL)/reduced graphene oxide (rGO) scaffolds are studied with differential scanning calorimetry (DSC) at various cooling rates (5, 10, 15 and 20 °C/min). Thermally induced phase...

Descripción completa

Detalles Bibliográficos
Autores principales: Díaz, Esperanza, Mendivil, Ainhoa, León, Joseba
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496191/
https://www.ncbi.nlm.nih.gov/pubmed/36134920
http://dx.doi.org/10.3390/biomimetics7030116
Descripción
Sumario:Morphology, thermal properties and the non-isothermal melt crystallization kinetics of biodegradable poly(ε-caprolactone) (PCL)/reduced graphene oxide (rGO) scaffolds are studied with differential scanning calorimetry (DSC) at various cooling rates (5, 10, 15 and 20 °C/min). Thermally induced phase separation was used to manufacture the scaffolds (TIPS). The micrographs show a more homogeneous and defined morphology with larger pores and thicker pore walls. The melting temperature (Tm), melting enthalpy (ΔHm), crystallization enthalpy (ΔHc) and degree of crystallinity (Xc) increased with the addition of rGO, suggesting larger and more perfect crystalline structures. The degree of crystallinity increased with the presence of rGO. The crystallization peak shifted to higher temperatures as the rGO concentration increased independently of the cooling rates. The peak shifted to lower temperatures as the cooling rate increased with the same rGO composition. The values of t(1/2) (time needed to reach 50% crystallization) were lower for scaffolds with rGO. The values of the crystallization rate coefficient were higher when the porous support contained rGO, which indicates that their crystallization systems are faster. The activation energy obtained with the Kissinger method decreased with the presence of rGO. The results indicate that reduced graphene oxide acts as a nucleating agent in the non-isothermal melt crystallization process. The addition of small quantities of rGO changes their thermal properties with which they can be modified for application in the field of tissue engineering.