Cargando…
Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect
(1) Background: Emergence of methods interrogating gene expression at high throughput gave birth to quantitative transcriptomics, but also posed a question of inter-comparison of expression profiles obtained using different equipment and protocols and/or in different series of experiments. Addressin...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496268/ https://www.ncbi.nlm.nih.gov/pubmed/36140419 http://dx.doi.org/10.3390/biomedicines10092318 |
_version_ | 1784794226963251200 |
---|---|
author | Borisov, Nicolas Buzdin, Anton |
author_facet | Borisov, Nicolas Buzdin, Anton |
author_sort | Borisov, Nicolas |
collection | PubMed |
description | (1) Background: Emergence of methods interrogating gene expression at high throughput gave birth to quantitative transcriptomics, but also posed a question of inter-comparison of expression profiles obtained using different equipment and protocols and/or in different series of experiments. Addressing this issue is challenging, because all of the above variables can dramatically influence gene expression signals and, therefore, cause a plethora of peculiar features in the transcriptomic profiles. Millions of transcriptomic profiles were obtained and deposited in public databases of which the usefulness is however strongly limited due to the inter-comparison issues; (2) Methods: Dozens of methods and software packages that can be generally classified as either flexible or predefined format harmonizers have been proposed, but none has become to the date the gold standard for unification of this type of Big Data; (3) Results: However, recent developments evidence that platform/protocol/batch bias can be efficiently reduced not only for the comparisons of limited transcriptomic datasets. Instead, instruments were proposed for transforming gene expression profiles into the universal, uniformly shaped format that can support multiple inter-comparisons for reasonable calculation costs. This forms a basement for universal indexing of all or most of all types of RNA sequencing and microarray hybridization profiles; (4) Conclusions: In this paper, we attempted to overview the landscape of modern approaches and methods in transcriptomic harmonization and focused on the practical aspects of their application. |
format | Online Article Text |
id | pubmed-9496268 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94962682022-09-23 Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect Borisov, Nicolas Buzdin, Anton Biomedicines Review (1) Background: Emergence of methods interrogating gene expression at high throughput gave birth to quantitative transcriptomics, but also posed a question of inter-comparison of expression profiles obtained using different equipment and protocols and/or in different series of experiments. Addressing this issue is challenging, because all of the above variables can dramatically influence gene expression signals and, therefore, cause a plethora of peculiar features in the transcriptomic profiles. Millions of transcriptomic profiles were obtained and deposited in public databases of which the usefulness is however strongly limited due to the inter-comparison issues; (2) Methods: Dozens of methods and software packages that can be generally classified as either flexible or predefined format harmonizers have been proposed, but none has become to the date the gold standard for unification of this type of Big Data; (3) Results: However, recent developments evidence that platform/protocol/batch bias can be efficiently reduced not only for the comparisons of limited transcriptomic datasets. Instead, instruments were proposed for transforming gene expression profiles into the universal, uniformly shaped format that can support multiple inter-comparisons for reasonable calculation costs. This forms a basement for universal indexing of all or most of all types of RNA sequencing and microarray hybridization profiles; (4) Conclusions: In this paper, we attempted to overview the landscape of modern approaches and methods in transcriptomic harmonization and focused on the practical aspects of their application. MDPI 2022-09-18 /pmc/articles/PMC9496268/ /pubmed/36140419 http://dx.doi.org/10.3390/biomedicines10092318 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Borisov, Nicolas Buzdin, Anton Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect |
title | Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect |
title_full | Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect |
title_fullStr | Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect |
title_full_unstemmed | Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect |
title_short | Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect |
title_sort | transcriptomic harmonization as the way for suppressing cross-platform bias and batch effect |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496268/ https://www.ncbi.nlm.nih.gov/pubmed/36140419 http://dx.doi.org/10.3390/biomedicines10092318 |
work_keys_str_mv | AT borisovnicolas transcriptomicharmonizationasthewayforsuppressingcrossplatformbiasandbatcheffect AT buzdinanton transcriptomicharmonizationasthewayforsuppressingcrossplatformbiasandbatcheffect |