Cargando…
Transcriptomic Harmonization as the Way for Suppressing Cross-Platform Bias and Batch Effect
(1) Background: Emergence of methods interrogating gene expression at high throughput gave birth to quantitative transcriptomics, but also posed a question of inter-comparison of expression profiles obtained using different equipment and protocols and/or in different series of experiments. Addressin...
Autores principales: | Borisov, Nicolas, Buzdin, Anton |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496268/ https://www.ncbi.nlm.nih.gov/pubmed/36140419 http://dx.doi.org/10.3390/biomedicines10092318 |
Ejemplares similares
-
Shambhala: a platform-agnostic data harmonizer for gene expression data
por: Borisov, Nicolas, et al.
Publicado: (2019) -
Uniformly shaped harmonization combines human transcriptomic data from different platforms while retaining their biological properties and differential gene expression patterns
por: Borisov, Nicolas, et al.
Publicado: (2023) -
High-Throughput Mutation Data Now Complement Transcriptomic Profiling: Advances in Molecular Pathway Activation Analysis Approach in Cancer Biology
por: Buzdin, Anton, et al.
Publicado: (2019) -
Image harmonization: A review of statistical and deep learning methods for removing batch effects and evaluation metrics for effective harmonization
por: Hu, Fengling, et al.
Publicado: (2023) -
New Paradigm of Machine Learning (ML) in Personalized Oncology: Data Trimming for Squeezing More Biomarkers From Clinical Datasets
por: Borisov, Nicolas, et al.
Publicado: (2019)