Cargando…
Use of Deep Learning to Detect the Maternal Heart Rate and False Signals on Fetal Heart Rate Recordings
We have developed deep learning models for automatic identification of the maternal heart rate (MHR) and, more generally, false signals (FSs) on fetal heart rate (FHR) recordings. The models can be used to preprocess FHR data prior to automated analysis or as a clinical alert system to assist the pr...
Autores principales: | Boudet, Samuel, Houzé de l’Aulnoit, Agathe, Peyrodie, Laurent, Demailly, Romain, Houzé de l’Aulnoit, Denis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496277/ https://www.ncbi.nlm.nih.gov/pubmed/36140076 http://dx.doi.org/10.3390/bios12090691 |
Ejemplares similares
-
Some Attempts at Human Anaplasia by Means of Mucous Grafts from the Cheeks and Tongues of Rabbits and Oxen
por: De L’aulnoit, Houze
Publicado: (1873) -
Improvements in fetal heart rate analysis by the removal of maternal-fetal heart rate ambiguities
por: Pinto, Paula, et al.
Publicado: (2015) -
Is there evidence of fetal-maternal heart rate synchronization?
por: Van Leeuwen, Peter, et al.
Publicado: (2003) -
Fetal Heart Rate Fragmentation
por: Costa, Matilde, et al.
Publicado: (2021) -
A New Method to Derive Fetal Heart Rate from Maternal Abdominal Electrocardiogram: Monitoring Fetal Heart Rate during Cesarean Section
por: Yeh, Huei-Ming, et al.
Publicado: (2015)