Cargando…

An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review

Heart failure (HF) is one of the leading causes of mortality and hospitalization worldwide. The accurate prediction of mortality and readmission risk provides crucial information for guiding decision making. Unfortunately, traditional predictive models reached modest accuracy in HF populations. We t...

Descripción completa

Detalles Bibliográficos
Autores principales: Błaziak, Mikołaj, Urban, Szymon, Wietrzyk, Weronika, Jura, Maksym, Iwanek, Gracjan, Stańczykiewicz, Bartłomiej, Kuliczkowski, Wiktor, Zymliński, Robert, Pondel, Maciej, Berka, Petr, Danel, Dariusz, Biegus, Jan, Siennicka, Agnieszka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496386/
https://www.ncbi.nlm.nih.gov/pubmed/36140289
http://dx.doi.org/10.3390/biomedicines10092188
_version_ 1784794256091643904
author Błaziak, Mikołaj
Urban, Szymon
Wietrzyk, Weronika
Jura, Maksym
Iwanek, Gracjan
Stańczykiewicz, Bartłomiej
Kuliczkowski, Wiktor
Zymliński, Robert
Pondel, Maciej
Berka, Petr
Danel, Dariusz
Biegus, Jan
Siennicka, Agnieszka
author_facet Błaziak, Mikołaj
Urban, Szymon
Wietrzyk, Weronika
Jura, Maksym
Iwanek, Gracjan
Stańczykiewicz, Bartłomiej
Kuliczkowski, Wiktor
Zymliński, Robert
Pondel, Maciej
Berka, Petr
Danel, Dariusz
Biegus, Jan
Siennicka, Agnieszka
author_sort Błaziak, Mikołaj
collection PubMed
description Heart failure (HF) is one of the leading causes of mortality and hospitalization worldwide. The accurate prediction of mortality and readmission risk provides crucial information for guiding decision making. Unfortunately, traditional predictive models reached modest accuracy in HF populations. We therefore aimed to present predictive models based on machine learning (ML) techniques in HF patients that were externally validated. We searched four databases and the reference lists of the included papers to identify studies in which HF patient data were used to create a predictive model. Literature screening was conducted in Academic Search Ultimate, ERIC, Health Source Nursing/Academic Edition and MEDLINE. The protocol of the current systematic review was registered in the PROSPERO database with the registration number CRD42022344855. We considered all types of outcomes: mortality, rehospitalization, response to treatment and medication adherence. The area under the receiver operating characteristic curve (AUC) was used as the comparator parameter. The literature search yielded 1649 studies, of which 9 were included in the final analysis. The AUCs for the machine learning models ranged from 0.6494 to 0.913 in independent datasets, whereas the AUCs for statistical predictive scores ranged from 0.622 to 0.806. Our study showed an increasing number of ML predictive models concerning HF populations, although external validation remains infrequent. However, our findings revealed that ML approaches can outperform conventional risk scores and may play important role in HF management.
format Online
Article
Text
id pubmed-9496386
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94963862022-09-23 An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review Błaziak, Mikołaj Urban, Szymon Wietrzyk, Weronika Jura, Maksym Iwanek, Gracjan Stańczykiewicz, Bartłomiej Kuliczkowski, Wiktor Zymliński, Robert Pondel, Maciej Berka, Petr Danel, Dariusz Biegus, Jan Siennicka, Agnieszka Biomedicines Systematic Review Heart failure (HF) is one of the leading causes of mortality and hospitalization worldwide. The accurate prediction of mortality and readmission risk provides crucial information for guiding decision making. Unfortunately, traditional predictive models reached modest accuracy in HF populations. We therefore aimed to present predictive models based on machine learning (ML) techniques in HF patients that were externally validated. We searched four databases and the reference lists of the included papers to identify studies in which HF patient data were used to create a predictive model. Literature screening was conducted in Academic Search Ultimate, ERIC, Health Source Nursing/Academic Edition and MEDLINE. The protocol of the current systematic review was registered in the PROSPERO database with the registration number CRD42022344855. We considered all types of outcomes: mortality, rehospitalization, response to treatment and medication adherence. The area under the receiver operating characteristic curve (AUC) was used as the comparator parameter. The literature search yielded 1649 studies, of which 9 were included in the final analysis. The AUCs for the machine learning models ranged from 0.6494 to 0.913 in independent datasets, whereas the AUCs for statistical predictive scores ranged from 0.622 to 0.806. Our study showed an increasing number of ML predictive models concerning HF populations, although external validation remains infrequent. However, our findings revealed that ML approaches can outperform conventional risk scores and may play important role in HF management. MDPI 2022-09-05 /pmc/articles/PMC9496386/ /pubmed/36140289 http://dx.doi.org/10.3390/biomedicines10092188 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Systematic Review
Błaziak, Mikołaj
Urban, Szymon
Wietrzyk, Weronika
Jura, Maksym
Iwanek, Gracjan
Stańczykiewicz, Bartłomiej
Kuliczkowski, Wiktor
Zymliński, Robert
Pondel, Maciej
Berka, Petr
Danel, Dariusz
Biegus, Jan
Siennicka, Agnieszka
An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review
title An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review
title_full An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review
title_fullStr An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review
title_full_unstemmed An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review
title_short An Artificial Intelligence Approach to Guiding the Management of Heart Failure Patients Using Predictive Models: A Systematic Review
title_sort artificial intelligence approach to guiding the management of heart failure patients using predictive models: a systematic review
topic Systematic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496386/
https://www.ncbi.nlm.nih.gov/pubmed/36140289
http://dx.doi.org/10.3390/biomedicines10092188
work_keys_str_mv AT błaziakmikołaj anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT urbanszymon anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT wietrzykweronika anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT juramaksym anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT iwanekgracjan anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT stanczykiewiczbartłomiej anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT kuliczkowskiwiktor anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT zymlinskirobert anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT pondelmaciej anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT berkapetr anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT daneldariusz anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT biegusjan anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT siennickaagnieszka anartificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT błaziakmikołaj artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT urbanszymon artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT wietrzykweronika artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT juramaksym artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT iwanekgracjan artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT stanczykiewiczbartłomiej artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT kuliczkowskiwiktor artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT zymlinskirobert artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT pondelmaciej artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT berkapetr artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT daneldariusz artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT biegusjan artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview
AT siennickaagnieszka artificialintelligenceapproachtoguidingthemanagementofheartfailurepatientsusingpredictivemodelsasystematicreview