Cargando…

The Pro-Fibrotic Response to Lens Injury Is Signaled in a PI3K Isoform-Specific Manner

The signaling inputs that function to integrate biochemical and mechanical cues from the extracellular environment to alter the wound-repair outcome to a fibrotic response remain poorly understood. Here, using a clinically relevant post-cataract surgery wound healing/fibrosis model, we investigated...

Descripción completa

Detalles Bibliográficos
Autores principales: Menko, A. Sue, Walker, Janice L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496593/
https://www.ncbi.nlm.nih.gov/pubmed/36139020
http://dx.doi.org/10.3390/biom12091181
Descripción
Sumario:The signaling inputs that function to integrate biochemical and mechanical cues from the extracellular environment to alter the wound-repair outcome to a fibrotic response remain poorly understood. Here, using a clinically relevant post-cataract surgery wound healing/fibrosis model, we investigated the role of Phosphoinositide-3-kinase (PI3K) class I isoforms as potential signaling integrators to promote the proliferation, emergence and persistence of collagen I-producing alpha smooth muscle actin (αSMA+) myofibroblasts that cause organ fibrosis. Using PI3K isoform specific small molecule inhibitors, our studies revealed a requisite role for PI3K p110α in signaling the CD44+ mesenchymal leader cell population that we previously identified as resident immune cells to produce and organize a fibronectin-EDA rich provisional matrix and transition to collagen I-producing αSMA+ myofibroblasts. While the PI3K effector Akt was alone insufficient to regulate myofibroblast differentiation, our studies revealed a role for Rac, another potential PI3K effector, in this process. Our studies further uncovered a critical role for PI3K p110α in signaling the proliferation of CD44+ leader cells, which is important to the emergence and expansion of myofibroblasts. Thus, these studies identify activation of PI3K p110α as a critical signaling input following wounding to the development and progression of fibrotic disease.