Cargando…
U-Net Based Segmentation and Characterization of Gliomas
SIMPLE SUMMARY: Gliomas comprise 80% of all malignant brain tumors. We aimed to develop a deep learning-based framework for the automatic segmentation and characterization of gliomas. In this retrospective study, patients were included if they: (1) had a diagnosis of glioma confirmed by histopatholo...
Autores principales: | Kihira, Shingo, Mei, Xueyan, Mahmoudi, Keon, Liu, Zelong, Dogra, Siddhant, Belani, Puneet, Tsankova, Nadejda, Hormigo, Adilia, Fayad, Zahi A., Doshi, Amish, Nael, Kambiz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496685/ https://www.ncbi.nlm.nih.gov/pubmed/36139616 http://dx.doi.org/10.3390/cancers14184457 |
Ejemplares similares
-
Multiparametric MRI texture analysis in prediction of glioma biomarker status: added value of MR diffusion
por: Kihira, Shingo, et al.
Publicado: (2021) -
MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting
por: Sakai, Yu, et al.
Publicado: (2020) -
Multi-Parametric Radiomic Model to Predict 1p/19q Co-Deletion in Patients with IDH-1 Mutant Glioma: Added Value to the T2-FLAIR Mismatch Sign
por: Kihira, Shingo, et al.
Publicado: (2023) -
Addition of arterial spin-labelled MR perfusion to conventional brain MRI: clinical experience in a retrospective cohort study
por: Belani, Puneet, et al.
Publicado: (2020) -
Tumoral and immune heterogeneity in an anti-PD-1-responsive glioblastoma: a case study
por: Restrepo, Paula, et al.
Publicado: (2020)