Cargando…
A Parallel Feature Fusion Network Combining GRU and CNN for Motor Imagery EEG Decoding
In recent years, deep-learning-based motor imagery (MI) electroencephalography (EEG) decoding methods have shown great potential in the field of the brain–computer interface (BCI). The existing literature is relatively mature in decoding methods for two classes of MI tasks. However, with the increas...
Autores principales: | Gao, Siheng, Yang, Jun, Shen, Tao, Jiang, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496764/ https://www.ncbi.nlm.nih.gov/pubmed/36138969 http://dx.doi.org/10.3390/brainsci12091233 |
Ejemplares similares
-
A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding
por: Yang, Jun, et al.
Publicado: (2022) -
Interpretation of Electrocardiogram Heartbeat by CNN and GRU
por: Yao, Guoliang, et al.
Publicado: (2021) -
A Decoding Scheme for Incomplete Motor Imagery EEG With Deep Belief Network
por: Chu, Yaqi, et al.
Publicado: (2018) -
Conditional Adversarial Domain Adaptation Neural Network for Motor Imagery EEG Decoding
por: Tang, Xingliang, et al.
Publicado: (2020) -
Data augmentation strategies for EEG-based motor imagery decoding
por: George, Olawunmi, et al.
Publicado: (2022)