Cargando…

Emotional Brain Network Community Division Study Based on an Improved Immunogenetic Algorithm

Emotion analysis has emerged as one of the most prominent study areas in the field of Brain Computer Interface (BCI) due to the critical role that the human brain plays in the creation of human emotions. In this study, a Multi-objective Immunogenetic Community Division Algorithm Based on Memetic Fra...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Renjie, Zhang, Tao, Zhou, Shichao, Huang, Liya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496822/
https://www.ncbi.nlm.nih.gov/pubmed/36138897
http://dx.doi.org/10.3390/brainsci12091159
Descripción
Sumario:Emotion analysis has emerged as one of the most prominent study areas in the field of Brain Computer Interface (BCI) due to the critical role that the human brain plays in the creation of human emotions. In this study, a Multi-objective Immunogenetic Community Division Algorithm Based on Memetic Framework (MFMICD) was suggested to study different emotions from the perspective of brain networks. To improve convergence and accuracy, MFMICD incorporates the unique immunity operator based on the traditional genetic algorithm and combines it with the taboo search algorithm. Based on this approach, we examined how the structure of people’s brain networks alters in response to different emotions using the electroencephalographic emotion database. The findings revealed that, in positive emotional states, more brain regions are engaged in emotion dominance, the information exchange between local modules is more frequent, and various emotions cause more varied patterns of brain area interactions than in negative brain states. A brief analysis of the connections between different emotions and brain regions shows that MFMICD is reliable in dividing emotional brain functional networks into communities.