Cargando…
Human Amniotic Membrane Mesenchymal Stem Cell-Synthesized PGE(2) Exerts an Immunomodulatory Effect on Neutrophil Extracellular Trap in a PAD-4-Dependent Pathway through EP2 and EP4
Human amniotic membrane mesenchymal stem cells (hAM-MSC) secrete a myriad of components with immunosuppressive activities. In the present research, we aimed to describe the effect of prostaglandin E(2) (PGE(2)) secreted by hAM-MSCs on neutrophil extracellular trap (NET) release and to characterize t...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496826/ https://www.ncbi.nlm.nih.gov/pubmed/36139406 http://dx.doi.org/10.3390/cells11182831 |
Sumario: | Human amniotic membrane mesenchymal stem cells (hAM-MSC) secrete a myriad of components with immunosuppressive activities. In the present research, we aimed to describe the effect of prostaglandin E(2) (PGE(2)) secreted by hAM-MSCs on neutrophil extracellular trap (NET) release and to characterize the role of its receptors (EP2/EP4) in PAD-4 and NFκB activity in neutrophils. Human peripheral blood neutrophils were ionomycin-stimulated in the presence of hAM-MSC conditioned medium (CM) treated or not with the selective PGE(2) inhibitor MF-63, PGE(2), EP2/EP4 agonists, and the selective PAD-4 inhibitor GSK-484. NET release, PAD-4, and NFκB activation were analyzed. Ionomycin induced NET release, which was inhibited in the presence of hAM-MSC-CM, while CM from hAM-MSCs treated with MF-63 prevented NET release inhibition. PGE(2) and EP2/EP4 agonists, and GSK-484 inhibited NET release. EP2/EP4 agonists and GSK-484 inhibited H3-citrullination but did not affect PAD-4 protein expression. Finally, PGE(2) and EP2/EP4 agonists and GSK-484 increased NFκB phosphorylation. Taken together, these results suggest that hAM-MSC exert their immunomodulatory activities through PGE(2,) inhibiting NET release in a PAD-4-dependent pathway. This research proposes a new mechanism by which hAM-MSC exert their activities when modulating the innate immune response and inhibiting NET release. |
---|