Cargando…

NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer

SIMPLE SUMMARY: Adjuvant radiotherapy for breast cancer patients significantly improves survival and causes side effects. It is known that the response to radiotherapy is individual, but we are not yet able to predict patients with high risk for acute or late radiotherapy adverse events. This study...

Descripción completa

Detalles Bibliográficos
Autores principales: Goričar, Katja, Dugar, Franja, Dolžan, Vita, Marinko, Tanja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496855/
https://www.ncbi.nlm.nih.gov/pubmed/36139526
http://dx.doi.org/10.3390/cancers14184365
_version_ 1784794372849532928
author Goričar, Katja
Dugar, Franja
Dolžan, Vita
Marinko, Tanja
author_facet Goričar, Katja
Dugar, Franja
Dolžan, Vita
Marinko, Tanja
author_sort Goričar, Katja
collection PubMed
description SIMPLE SUMMARY: Adjuvant radiotherapy for breast cancer patients significantly improves survival and causes side effects. It is known that the response to radiotherapy is individual, but we are not yet able to predict patients with high risk for acute or late radiotherapy adverse events. This study aimed to investigate the association between homologous recombination repair (HRR) polymorphisms and radiotherapy toxicity and thus contribute to the knowledge on potential predictive biomarkers of radiotherapy toxicity in early HER2-positive breast cancer. This study was among the first to evaluate the role of HRR genetic variability with cardiac toxicity. RAD51 polymorphisms were associated with cardiac adverse events, while XRCC3 polymorphisms were associated with skin adverse events. Our results suggest that polymorphisms in key HRR genes might be used as potential biomarkers of late treatment-related adverse events in early HER2-positive breast cancer treated with radiotherapy. ABSTRACT: Radiotherapy (RT) for breast cancer significantly impacts patient survival and causes adverse events. Double-strand breaks are the most harmful type of DNA damage associated with RT, which is repaired through homologous recombination (HRR). As genetic variability of DNA repair genes could affect response to RT, we aimed to evaluate the association of polymorphisms in HRR genes with tumor characteristics and the occurrence of RT adverse events in early HER2-positive breast cancer. Our study included 101 breast cancer patients treated with adjuvant RT and trastuzumab. All patients were genotyped for eight single nucleotide polymorphisms in NBN, RAD51 and XRCC3 using competitive allele-specific PCR. Carriers of XRCC3 rs1799794 GG genotype were less likely to have higher tumor differentiation grade (OR = 0.05, 95% CI = 0.01–0.44, p = 0.007). Carriers of RAD51 rs1801321 TT genotype were more likely to have higher NYHA class in univariable (OR = 10.0; 95% CI = 1.63–61.33; p = 0.013) and multivariable (OR = 9.27; 95% CI = 1.28–67.02; p = 0.027) analysis. Carriers of RAD51 rs12593359 GG genotype were less likely to have higher NYHA class in univariable (OR = 0.09; 95% CI = 0.01–0.79; p = 0.030) and multivariable (OR = 0.07; 95% CI = 0.01–0.81; p = 0.034) analysis. Carriers of XRCC3 rs1799794 GG genotypes experienced more skin adverse events based on LENT-SOMA scale in univariable (OR = 5.83; 95% CI = 1.22–28.00; p = 0.028) and multivariable (OR = 10.90; 95% CI = 1.61–73.72; p = 0.014) analysis. In conclusion, XRCC3 and RAD51 polymorphisms might contribute to RT adverse events in early HER2-positive breast cancer patients.
format Online
Article
Text
id pubmed-9496855
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94968552022-09-23 NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer Goričar, Katja Dugar, Franja Dolžan, Vita Marinko, Tanja Cancers (Basel) Article SIMPLE SUMMARY: Adjuvant radiotherapy for breast cancer patients significantly improves survival and causes side effects. It is known that the response to radiotherapy is individual, but we are not yet able to predict patients with high risk for acute or late radiotherapy adverse events. This study aimed to investigate the association between homologous recombination repair (HRR) polymorphisms and radiotherapy toxicity and thus contribute to the knowledge on potential predictive biomarkers of radiotherapy toxicity in early HER2-positive breast cancer. This study was among the first to evaluate the role of HRR genetic variability with cardiac toxicity. RAD51 polymorphisms were associated with cardiac adverse events, while XRCC3 polymorphisms were associated with skin adverse events. Our results suggest that polymorphisms in key HRR genes might be used as potential biomarkers of late treatment-related adverse events in early HER2-positive breast cancer treated with radiotherapy. ABSTRACT: Radiotherapy (RT) for breast cancer significantly impacts patient survival and causes adverse events. Double-strand breaks are the most harmful type of DNA damage associated with RT, which is repaired through homologous recombination (HRR). As genetic variability of DNA repair genes could affect response to RT, we aimed to evaluate the association of polymorphisms in HRR genes with tumor characteristics and the occurrence of RT adverse events in early HER2-positive breast cancer. Our study included 101 breast cancer patients treated with adjuvant RT and trastuzumab. All patients were genotyped for eight single nucleotide polymorphisms in NBN, RAD51 and XRCC3 using competitive allele-specific PCR. Carriers of XRCC3 rs1799794 GG genotype were less likely to have higher tumor differentiation grade (OR = 0.05, 95% CI = 0.01–0.44, p = 0.007). Carriers of RAD51 rs1801321 TT genotype were more likely to have higher NYHA class in univariable (OR = 10.0; 95% CI = 1.63–61.33; p = 0.013) and multivariable (OR = 9.27; 95% CI = 1.28–67.02; p = 0.027) analysis. Carriers of RAD51 rs12593359 GG genotype were less likely to have higher NYHA class in univariable (OR = 0.09; 95% CI = 0.01–0.79; p = 0.030) and multivariable (OR = 0.07; 95% CI = 0.01–0.81; p = 0.034) analysis. Carriers of XRCC3 rs1799794 GG genotypes experienced more skin adverse events based on LENT-SOMA scale in univariable (OR = 5.83; 95% CI = 1.22–28.00; p = 0.028) and multivariable (OR = 10.90; 95% CI = 1.61–73.72; p = 0.014) analysis. In conclusion, XRCC3 and RAD51 polymorphisms might contribute to RT adverse events in early HER2-positive breast cancer patients. MDPI 2022-09-08 /pmc/articles/PMC9496855/ /pubmed/36139526 http://dx.doi.org/10.3390/cancers14184365 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Goričar, Katja
Dugar, Franja
Dolžan, Vita
Marinko, Tanja
NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer
title NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer
title_full NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer
title_fullStr NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer
title_full_unstemmed NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer
title_short NBN, RAD51 and XRCC3 Polymorphisms as Potential Predictive Biomarkers of Adjuvant Radiotherapy Toxicity in Early HER2-Positive Breast Cancer
title_sort nbn, rad51 and xrcc3 polymorphisms as potential predictive biomarkers of adjuvant radiotherapy toxicity in early her2-positive breast cancer
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496855/
https://www.ncbi.nlm.nih.gov/pubmed/36139526
http://dx.doi.org/10.3390/cancers14184365
work_keys_str_mv AT goricarkatja nbnrad51andxrcc3polymorphismsaspotentialpredictivebiomarkersofadjuvantradiotherapytoxicityinearlyher2positivebreastcancer
AT dugarfranja nbnrad51andxrcc3polymorphismsaspotentialpredictivebiomarkersofadjuvantradiotherapytoxicityinearlyher2positivebreastcancer
AT dolzanvita nbnrad51andxrcc3polymorphismsaspotentialpredictivebiomarkersofadjuvantradiotherapytoxicityinearlyher2positivebreastcancer
AT marinkotanja nbnrad51andxrcc3polymorphismsaspotentialpredictivebiomarkersofadjuvantradiotherapytoxicityinearlyher2positivebreastcancer