Cargando…

Astragaloside IV Inhibits the Proliferation of Human Uterine Leiomyomas by Targeting IDO1

SIMPLE SUMMARY: Immunotherapy is increasingly becoming a success strategy for oncology treatment. Indoleamine-2,3-dioxygenase1 (IDO1) is a tryptophan-degrading enzyme involved in immunological escape mechanisms, which is considered as a potential target for tumor therapy. However, the clinical effic...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Tiantian, Li, Donghua, Liu, Yu, Ren, Hui, Yang, Xuan, Luo, Wenting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9496999/
https://www.ncbi.nlm.nih.gov/pubmed/36139584
http://dx.doi.org/10.3390/cancers14184424
Descripción
Sumario:SIMPLE SUMMARY: Immunotherapy is increasingly becoming a success strategy for oncology treatment. Indoleamine-2,3-dioxygenase1 (IDO1) is a tryptophan-degrading enzyme involved in immunological escape mechanisms, which is considered as a potential target for tumor therapy. However, the clinical efficacy of IDO1 inhibitors is not promising. Therefore, there is an urgent to investigate the mechanism between chemical drugs with antitumor effects and IDO1-mediated immunosuppression. The Chinese medicine AS-IV exerts antitumor effects with many advantages, including fewer toxic side effects and immunomodulatory effects. We noted the lack of studies of AS-IV on benign tumors. Therefore, our study demonstrates the Inhibitory effect of AS-IV on ULMs and elucidates the underlying mechanism. ABSTRACT: Astragaloside IV (AS-IV) is a chemical found in traditional Chinese medicine called Astragalus membranaceus (Fisch.) Bunge that has antitumor properties. However, the roles and mechanisms of AS-IV in uterine leiomyomas (ULMs) are unclear. The immunosuppressive enzyme indoleamine-2,3-dioxygenase-1 (IDO1) is involved in tumor formation. IDO1 is a new and reliable prognostic indicator for several cancers. In this work, AS-IV was applied to ULM cells in various concentrations. CCK-8, immunofluorescence, and flow cytometry were used to examine the proliferation and apoptosis of ULM cells caused by AS-IV. After lentiviral vector transduction with IDO1 short hairpin RNA (shRNA), the knockdown and overexpression of IDO1 were stable in ULM cells. To verify the antitumor effect of AS-IV in vivo, we established a rat model of uterine leiomyoma. HE staining, Masson staining, and transmission electron microscopy were used to observe pathological changes in the uterus, and the levels of serum sex hormones were measured by radio immune assay (RIA). The levels of CD3+T, CD4+T, and CD25+ Foxp3+Treg in rat peripheral blood were detected by flow cytometry. Western blotting and immunohistochemistry were used to examine protein expression. We found that AS-IV dramatically increased the apoptotic rate of ULM cells and reduced viability in a time- and dosage-dependent manner. After sh-IDO1 lentiviral transfection, we discovered that knocking down IDO1 reversed the effects of AS-IV on ULM cell proliferation and autophagy. We also found that AS-IV can effectively inhibit the growth of ULMs in vivo. AS-IV may promote apoptosis and autophagy in ULMs by activating PTEN/PI3K/AKT signaling through inhibition of IDO1. These findings imply that AS-IV exerts antifibroid effects, and the underlying mechanism may be IDO1, which is involved in proliferation, apoptosis, and autophagy.