Cargando…
Automatic Recognition of High-Density Epileptic EEG Using Support Vector Machine and Gradient-Boosting Decision Tree
Background: Epilepsy (Ep) is a chronic neural disease. The diagnosis of epilepsy depends on detailed seizure history and scalp electroencephalogram (EEG) examinations. The automatic recognition of epileptic EEG is an artificial intelligence application developed from machine learning (ML). Purpose:...
Autores principales: | He, Jiaxiu, Yang, Li, Liu, Ding, Song, Zhi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497056/ https://www.ncbi.nlm.nih.gov/pubmed/36138933 http://dx.doi.org/10.3390/brainsci12091197 |
Ejemplares similares
-
EEG Microstate Features as an Automatic Recognition Model of High-Density Epileptic EEG Using Support Vector Machine
por: Yang, Li, et al.
Publicado: (2022) -
Automated Recognition of Epileptic EEG States Using a Combination of Symlet Wavelet Processing, Gradient Boosting Machine, and Grid Search Optimizer
por: Wang, Xiashuang, et al.
Publicado: (2019) -
Epileptic seizure detection using EEG signals and extreme gradient boosting
por: Vanabelle, Paul, et al.
Publicado: (2020) -
Epilepsy Seizures Prediction Based on Nonlinear Features of EEG Signal and Gradient Boosting Decision Tree
por: Xu, Xin, et al.
Publicado: (2022) -
Classification and Recognition of Building Appearance Based on Optimized Gradient-Boosted Decision Tree Algorithm
por: Hu, Mengting, et al.
Publicado: (2023)