Cargando…
Development of a Machine Learning Model to Discriminate Mild Cognitive Impairment Subjects from Normal Controls in Community Screening
Background: Mild cognitive impairment (MCI) is a transitional stage between normal aging and probable Alzheimer’s disease. It is of great value to screen for MCI in the community. A novel machine learning (ML) model is composed of electroencephalography (EEG), eye tracking (ET), and neuropsychologic...
Autores principales: | Jiang, Juanjuan, Zhang, Jieming, Li, Chenyang, Yu, Zhihua, Yan, Zhuangzhi, Jiang, Jiehui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497124/ https://www.ncbi.nlm.nih.gov/pubmed/36138886 http://dx.doi.org/10.3390/brainsci12091149 |
Ejemplares similares
-
A Novel Metabolic Connectome Method to Predict Progression to Mild Cognitive Impairment
por: Wang, Min, et al.
Publicado: (2020) -
Predicting Alzheimer Disease From Mild Cognitive Impairment With a Deep
Belief Network Based on 18F-FDG-PET Images
por: Shen, Ting, et al.
Publicado: (2019) -
Which part of the Quick mild cognitive impairment screen (Qmci) discriminates between normal cognition, mild cognitive impairment and dementia?
por: O'Caoimh, Rónán, et al.
Publicado: (2013) -
Use of Deep-Learning Genomics to Discriminate Healthy Individuals from Those with Alzheimer's Disease or Mild Cognitive Impairment
por: Li, Lanlan, et al.
Publicado: (2021) -
Using Deep Learning Radiomics to Distinguish Cognitively Normal Adults at Risk of Alzheimer’s Disease From Normal Control: An Exploratory Study Based on Structural MRI
por: Jiang, Jiehui, et al.
Publicado: (2022)