Cargando…
An Asymmetric Contrastive Loss for Handling Imbalanced Datasets
Contrastive learning is a representation learning method performed by contrasting a sample to other similar samples so that they are brought closely together, forming clusters in the feature space. The learning process is typically conducted using a two-stage training architecture, and it utilizes t...
Autores principales: | Vito, Valentino, Stefanus, Lim Yohanes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497504/ https://www.ncbi.nlm.nih.gov/pubmed/36141189 http://dx.doi.org/10.3390/e24091303 |
Ejemplares similares
-
Comparison of machine learning techniques to handle imbalanced COVID-19 CBC datasets
por: Dorn, Marcio, et al.
Publicado: (2021) -
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation
por: Yeung, Michael, et al.
Publicado: (2022) -
An Imbalanced Generative Adversarial Network-Based Approach for Network Intrusion Detection in an Imbalanced Dataset
por: Rao, Yamarthi Narasimha, et al.
Publicado: (2023) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018) -
Machine Learning Model for Imbalanced Cholera Dataset in Tanzania
por: Leo, Judith, et al.
Publicado: (2019)