Cargando…
Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture
Plasma rich in growth factors (PRGF) has several applications in dentistry that may require repeated applications of PRGF. Furthermore, it has been used for ex vivo expansion of human origin cells for their clinical application. One of the most relevant issues in these applications is to guarantee t...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497518/ https://www.ncbi.nlm.nih.gov/pubmed/36135168 http://dx.doi.org/10.3390/dj10090173 |
_version_ | 1784794525273686016 |
---|---|
author | Anitua, Eduardo de la Fuente, María Troya, María Zalduendo, Mar Alkhraisat, Mohammad Hamdan |
author_facet | Anitua, Eduardo de la Fuente, María Troya, María Zalduendo, Mar Alkhraisat, Mohammad Hamdan |
author_sort | Anitua, Eduardo |
collection | PubMed |
description | Plasma rich in growth factors (PRGF) has several applications in dentistry that may require repeated applications of PRGF. Furthermore, it has been used for ex vivo expansion of human origin cells for their clinical application. One of the most relevant issues in these applications is to guarantee the genetic stability of cells. In this study, the chromosomal stability of gingival fibroblasts and alveolar osteoblasts after long-term culture was evaluated. Cells were expanded with PRGF or foetal bovine serum (FBS) as a culture medium supplement until passage 7 or 8 for gingival fibroblast or alveolar osteoblasts, respectively. A comparative genomic hybridization (CGH) array was used for the genetic stability study. This analysis was performed at passage 3 and after long-term culture with the corresponding culture medium supplements. The cell proliferative rate was superior after PRGF culture. Array CGH analysis of cells maintained with all the three supplements did not reveal the existence of alterations in copy number or genetic instability. The autologous PRGF technology preserves the genomic stability of cells and emerges as a safe substitute for FBS as a culture medium supplement for the clinical translation of cell therapy. |
format | Online Article Text |
id | pubmed-9497518 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94975182022-09-23 Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture Anitua, Eduardo de la Fuente, María Troya, María Zalduendo, Mar Alkhraisat, Mohammad Hamdan Dent J (Basel) Article Plasma rich in growth factors (PRGF) has several applications in dentistry that may require repeated applications of PRGF. Furthermore, it has been used for ex vivo expansion of human origin cells for their clinical application. One of the most relevant issues in these applications is to guarantee the genetic stability of cells. In this study, the chromosomal stability of gingival fibroblasts and alveolar osteoblasts after long-term culture was evaluated. Cells were expanded with PRGF or foetal bovine serum (FBS) as a culture medium supplement until passage 7 or 8 for gingival fibroblast or alveolar osteoblasts, respectively. A comparative genomic hybridization (CGH) array was used for the genetic stability study. This analysis was performed at passage 3 and after long-term culture with the corresponding culture medium supplements. The cell proliferative rate was superior after PRGF culture. Array CGH analysis of cells maintained with all the three supplements did not reveal the existence of alterations in copy number or genetic instability. The autologous PRGF technology preserves the genomic stability of cells and emerges as a safe substitute for FBS as a culture medium supplement for the clinical translation of cell therapy. MDPI 2022-09-14 /pmc/articles/PMC9497518/ /pubmed/36135168 http://dx.doi.org/10.3390/dj10090173 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Anitua, Eduardo de la Fuente, María Troya, María Zalduendo, Mar Alkhraisat, Mohammad Hamdan Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture |
title | Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture |
title_full | Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture |
title_fullStr | Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture |
title_full_unstemmed | Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture |
title_short | Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture |
title_sort | autologous platelet rich plasma (prgf) preserves genomic stability of gingival fibroblasts and alveolar osteoblasts after long-term cell culture |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497518/ https://www.ncbi.nlm.nih.gov/pubmed/36135168 http://dx.doi.org/10.3390/dj10090173 |
work_keys_str_mv | AT anituaeduardo autologousplateletrichplasmaprgfpreservesgenomicstabilityofgingivalfibroblastsandalveolarosteoblastsafterlongtermcellculture AT delafuentemaria autologousplateletrichplasmaprgfpreservesgenomicstabilityofgingivalfibroblastsandalveolarosteoblastsafterlongtermcellculture AT troyamaria autologousplateletrichplasmaprgfpreservesgenomicstabilityofgingivalfibroblastsandalveolarosteoblastsafterlongtermcellculture AT zalduendomar autologousplateletrichplasmaprgfpreservesgenomicstabilityofgingivalfibroblastsandalveolarosteoblastsafterlongtermcellculture AT alkhraisatmohammadhamdan autologousplateletrichplasmaprgfpreservesgenomicstabilityofgingivalfibroblastsandalveolarosteoblastsafterlongtermcellculture |