Cargando…
UPANets: Learning from the Universal Pixel Attention Neworks
With the successful development in computer vision, building a deep convolutional neural network (CNNs) has been mainstream, considering the character of shared parameters in a convolutional layer. Stacking convolutional layers into a deep structure improves performance, but over-stacking also ramps...
Autores principales: | Tseng, Ching-Hsun, Lee, Shin-Jye, Feng, Jianan, Mao, Shengzhong, Wu, Yu-Ping, Shang, Jia-Yu, Zeng, Xiao-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497600/ https://www.ncbi.nlm.nih.gov/pubmed/36141129 http://dx.doi.org/10.3390/e24091243 |
Ejemplares similares
-
Mid-infrared single-pixel imaging at the single-photon level
por: Wang, Yinqi, et al.
Publicado: (2023) -
Learning heterogeneous reaction kinetics from X-ray videos pixel by pixel
por: Zhao, Hongbo, et al.
Publicado: (2023) -
Heuristic Attention Representation Learning for Self-Supervised Pretraining
por: Tran, Van Nhiem, et al.
Publicado: (2022) -
Attention-guided cascaded network with pixel-importance-balance loss for retinal vessel segmentation
por: Su, Hexing, et al.
Publicado: (2023) -
Pixel-Based Machine Learning in Medical Imaging
por: Suzuki, Kenji
Publicado: (2012)