Cargando…
Targeted L(1)-Regularization and Joint Modeling of Neural Networks for Causal Inference
The calculation of the Augmented Inverse Probability Weighting (AIPW) estimator of the Average Treatment Effect (ATE) is carried out in two steps, where in the first step, the treatment and outcome are modeled, and in the second step, the predictions are inserted into the AIPW estimator. The model m...
Autores principales: | Rostami, Mehdi, Saarela, Olli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497603/ https://www.ncbi.nlm.nih.gov/pubmed/36141175 http://dx.doi.org/10.3390/e24091290 |
Ejemplares similares
-
Normalized Augmented Inverse Probability Weighting with Neural Network Predictions
por: Rostami, Mehdi, et al.
Publicado: (2022) -
Causal Network Inference for Neural Ensemble Activity
por: Chen, Rong
Publicado: (2021) -
A graph neural network framework for causal inference in brain networks
por: Wein, S., et al.
Publicado: (2021) -
The Causal Inference of Cortical Neural Networks during Music Improvisations
por: Wan, Xiaogeng, et al.
Publicado: (2014) -
Neural spiking for causal inference and learning
por: Lansdell, Benjamin James, et al.
Publicado: (2023)