Cargando…
Robust Multiple Importance Sampling with Tsallis φ-Divergences
Multiple Importance Sampling (MIS) combines the probability density functions (pdf) of several sampling techniques. The combination weights depend on the proportion of samples used for the particular techniques. Weights can be found by optimization of the variance, but this approach is costly and nu...
Autores principales: | Sbert, Mateu, Szirmay-Kalos, László |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497700/ https://www.ncbi.nlm.nih.gov/pubmed/36141126 http://dx.doi.org/10.3390/e24091240 |
Ejemplares similares
-
GPU-Based Techniques for Global Illumination Effects
por: Szirmay-Kalos, László, et al.
Publicado: (2008) -
Generalizing the Balance Heuristic Estimator in Multiple Importance Sampling
por: Sbert, Mateu, et al.
Publicado: (2022) -
Some Properties of Weighted Tsallis and Kaniadakis Divergences
por: Sfetcu, Răzvan-Cornel, et al.
Publicado: (2022) -
Tsallis Entropy, Likelihood, and the Robust Seismic Inversion
por: de Lima, Igo Pedro, et al.
Publicado: (2020) -
A Comparative Study of Deep Neural Networks for Real-Time Semantic Segmentation during the Transurethral Resection of Bladder Tumors
por: Varnyú, Dóra, et al.
Publicado: (2022)