Cargando…
Deep Learning for Automatic Detection of Periodic Limb Movement Disorder Based on Electrocardiogram Signals
In this study, a deep learning model (deepPLM) is shown to automatically detect periodic limb movement syndrome (PLMS) based on electrocardiogram (ECG) signals. The designed deepPLM model consists of four 1D convolutional layers, two long short-term memory units, and a fully connected layer. The Ost...
Autores principales: | Urtnasan, Erdenebayar, Park, Jong-Uk, Lee, Jung-Hun, Koh, Sang-Baek, Lee, Kyoung-Joung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497702/ https://www.ncbi.nlm.nih.gov/pubmed/36140550 http://dx.doi.org/10.3390/diagnostics12092149 |
Ejemplares similares
-
Automatic Prediction of Atrial Fibrillation Based on Convolutional Neural Network Using a Short-term Normal Electrocardiogram Signal
por: Erdenebayar, Urtnasan, et al.
Publicado: (2019) -
Deep Convolutional Recurrent Model for Automatic Scoring Sleep Stages Based on Single-Lead ECG Signal
por: Urtnasan, Erdenebayar, et al.
Publicado: (2022) -
AI-Enabled Algorithm for Automatic Classification of Sleep Disorders Based on Single-Lead Electrocardiogram
por: Urtnasan, Erdenebayar, et al.
Publicado: (2021) -
Identification of Sleep Apnea Severity Based on Deep Learning from a Short-term Normal ECG
por: Urtnasan, Erdenebayar, et al.
Publicado: (2020) -
A Prediction Model of Incident Cardiovascular Disease in Patients with Sleep-Disordered Breathing
por: Park, Jong-Uk, et al.
Publicado: (2021)