Cargando…
Multifidelity Model Calibration in Structural Dynamics Using Stochastic Variational Inference on Manifolds
Bayesian techniques for engineering problems, which rely on Gaussian process (GP) regression, are known for their ability to quantify epistemic and aleatory uncertainties and for being data efficient. The mathematical elegance of applying these methods usually comes at a high computational cost when...
Autores principales: | Tsilifis, Panagiotis, Pandita, Piyush, Ghosh, Sayan, Wang, Liping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497729/ https://www.ncbi.nlm.nih.gov/pubmed/36141177 http://dx.doi.org/10.3390/e24091291 |
Ejemplares similares
-
Calibrating DFT Formation
Enthalpy Calculations by
Multifidelity Machine Learning
por: Gong, Sheng, et al.
Publicado: (2022) -
Multifidelity Analysis for Predicting Rare Events in Stochastic Computational Models of Complex Biological Systems
por: Pienaar, Elsje
Publicado: (2018) -
Multifidelity computing for coupling full and reduced order models
por: Ahmed, Shady E., et al.
Publicado: (2021) -
Approximation of stochastic invariant manifolds: stochastic manifolds for nonlinear SPDEs I
por: Chekroun, Mickaël D, et al.
Publicado: (2015) -
Stochastic calculus in manifolds
por: Emery, Michel
Publicado: (1989)