Cargando…
Performance of a Chest Radiography AI Algorithm for Detection of Missed or Mislabeled Findings: A Multicenter Study
Purpose: We assessed whether a CXR AI algorithm was able to detect missed or mislabeled chest radiograph (CXR) findings in radiology reports. Methods: We queried a multi-institutional radiology reports search database of 13 million reports to identify all CXR reports with addendums from 1999–2021. O...
Autores principales: | Kaviani, Parisa, Digumarthy, Subba R., Bizzo, Bernardo C., Reddy, Bhargava, Tadepalli, Manoj, Putha, Preetham, Jagirdar, Ammar, Ebrahimian, Shadi, Kalra, Mannudeep K., Dreyer, Keith J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497851/ https://www.ncbi.nlm.nih.gov/pubmed/36140488 http://dx.doi.org/10.3390/diagnostics12092086 |
Ejemplares similares
-
Frequency of Missed Findings on Chest Radiographs (CXRs) in an International, Multicenter Study: Application of AI to Reduce Missed Findings
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Auto-Detection of Motion Artifacts on CT Pulmonary Angiograms with a Physician-Trained AI Algorithm
por: Dasegowda, Giridhar, et al.
Publicado: (2023) -
Deep learning in chest radiography: Detection of findings and presence of change
por: Singh, Ramandeep, et al.
Publicado: (2018) -
Artificial intelligence matches subjective severity assessment of pneumonia for prediction of patient outcome and need for mechanical ventilation: a cohort study
por: Ebrahimian, Shadi, et al.
Publicado: (2021) -
Radiologist-Trained and -Tested (R2.2.4) Deep Learning Models for Identifying Anatomical Landmarks in Chest CT
por: Kaviani, Parisa, et al.
Publicado: (2022)