Cargando…
Attention Network with Information Distillation for Super-Resolution
Resolution is an intuitive assessment for the visual quality of images, which is limited by physical devices. Recently, image super-resolution (SR) models based on deep convolutional neural networks (CNNs) have made significant progress. However, most existing SR models require high computational co...
Autores principales: | Zang, Huaijuan, Zhao, Ying, Niu, Chao, Zhang, Haiyan, Zhan, Shu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497852/ https://www.ncbi.nlm.nih.gov/pubmed/36141112 http://dx.doi.org/10.3390/e24091226 |
Ejemplares similares
-
Super-Resolution Network with Information Distillation and Multi-Scale Attention for Medical CT Image
por: Zhao, Tianliu, et al.
Publicado: (2021) -
Automatic Search Dense Connection Module for Super-Resolution
por: Zang, Huaijuan, et al.
Publicado: (2022) -
Double paths network with residual information distillation for improving lung CT image super resolution
por: Chen, Yihan, et al.
Publicado: (2022) -
Enhancing the Super-Resolution of Medical Images: Introducing the Deep Residual Feature Distillation Channel Attention Network for Optimized Performance and Efficiency
por: Umirzakova, Sabina, et al.
Publicado: (2023) -
A Lightweight Feature Distillation and Enhancement Network for Super-Resolution Remote Sensing Images
por: Gao, Feng, et al.
Publicado: (2023)