Cargando…
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
Recently, emotional electroencephalography (EEG) has been of great importance in brain–computer interfaces, and it is more urgent to realize automatic emotion recognition. The EEG signal has the disadvantages of being non-smooth, non-linear, stochastic, and susceptible to background noise. Additiona...
Autores principales: | Li, Qi, Liu, Yunqing, Shang, Yujie, Zhang, Qiong, Yan, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497873/ https://www.ncbi.nlm.nih.gov/pubmed/36141073 http://dx.doi.org/10.3390/e24091187 |
Ejemplares similares
-
EEG-Based Emotion Classification Using a Deep Neural Network and Sparse Autoencoder
por: Liu, Junxiu, et al.
Publicado: (2020) -
Latent Factor Decoding of Multi-Channel EEG for Emotion Recognition Through Autoencoder-Like Neural Networks
por: Li, Xiang, et al.
Publicado: (2020) -
Nuclear Norm Regularized Deep Neural Network for EEG-Based Emotion Recognition
por: Liang, Shuang, et al.
Publicado: (2022) -
Multidimensional Feature in Emotion Recognition Based on Multi-Channel EEG Signals
por: Li, Qi, et al.
Publicado: (2022) -
A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction
por: Deng, Lei, et al.
Publicado: (2017)