Cargando…
Predicting Survival in Patients with Brain Tumors: Current State-of-the-Art of AI Methods Applied to MRI
Given growing clinical needs, in recent years Artificial Intelligence (AI) techniques have increasingly been used to define the best approaches for survival assessment and prediction in patients with brain tumors. Advances in computational resources, and the collection of (mainly) public databases,...
Autores principales: | di Noia, Christian, Grist, James T., Riemer, Frank, Lyasheva, Maria, Fabozzi, Miriana, Castelli, Mauro, Lodi, Raffaele, Tonon, Caterina, Rundo, Leonardo, Zaccagna, Fulvio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497964/ https://www.ncbi.nlm.nih.gov/pubmed/36140526 http://dx.doi.org/10.3390/diagnostics12092125 |
Ejemplares similares
-
Brain Tumor Diagnosis Using Machine Learning, Convolutional Neural Networks, Capsule Neural Networks and Vision Transformers, Applied to MRI: A Survey
por: Akinyelu, Andronicus A., et al.
Publicado: (2022) -
Assessing robustness of quantitative susceptibility-based MRI radiomic features in patients with multiple sclerosis
por: Fiscone, Cristiana, et al.
Publicado: (2023) -
Convolutional Neural Network Techniques for Brain Tumor Classification (from 2015 to 2022): Review, Challenges, and Future Perspectives
por: Xie, Yuting, et al.
Publicado: (2022) -
Advanced Computational Methods for Oncological Image Analysis
por: Rundo, Leonardo, et al.
Publicado: (2021) -
Hyperpolarized (13)C MRI: A novel approach for probing
cerebral metabolism in health and neurological disease
por: Grist, James T, et al.
Publicado: (2020)