Cargando…

Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution

We discuss generalized exponentials, whose inverse functions are at the core of generalized entropy formulas, with respect to particle–hole (KMS) symmetry. The latter is fundamental in field theory; so, possible statistical generalizations of the Boltzmann formula-based thermal field theory have to...

Descripción completa

Detalles Bibliográficos
Autor principal: Biró, Tamás S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497967/
https://www.ncbi.nlm.nih.gov/pubmed/36141102
http://dx.doi.org/10.3390/e24091217
_version_ 1784794639003287552
author Biró, Tamás S.
author_facet Biró, Tamás S.
author_sort Biró, Tamás S.
collection PubMed
description We discuss generalized exponentials, whose inverse functions are at the core of generalized entropy formulas, with respect to particle–hole (KMS) symmetry. The latter is fundamental in field theory; so, possible statistical generalizations of the Boltzmann formula-based thermal field theory have to take this property into account. We demonstrate that Kaniadakis’ approach is KMS ready and discuss possible further generalizations.
format Online
Article
Text
id pubmed-9497967
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94979672022-09-23 Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution Biró, Tamás S. Entropy (Basel) Article We discuss generalized exponentials, whose inverse functions are at the core of generalized entropy formulas, with respect to particle–hole (KMS) symmetry. The latter is fundamental in field theory; so, possible statistical generalizations of the Boltzmann formula-based thermal field theory have to take this property into account. We demonstrate that Kaniadakis’ approach is KMS ready and discuss possible further generalizations. MDPI 2022-08-30 /pmc/articles/PMC9497967/ /pubmed/36141102 http://dx.doi.org/10.3390/e24091217 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Biró, Tamás S.
Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution
title Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution
title_full Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution
title_fullStr Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution
title_full_unstemmed Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution
title_short Kaniadakis Entropy Leads to Particle–Hole Symmetric Distribution
title_sort kaniadakis entropy leads to particle–hole symmetric distribution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497967/
https://www.ncbi.nlm.nih.gov/pubmed/36141102
http://dx.doi.org/10.3390/e24091217
work_keys_str_mv AT birotamass kaniadakisentropyleadstoparticleholesymmetricdistribution