Cargando…
Deep-Learning-Based Real-Time and Automatic Target-to-Background Ratio Calculation in Fluorescence Endoscopy for Cancer Detection and Localization
Esophageal adenocarcinoma (EAC) is a deadly cancer that is rising rapidly in incidence. The early detection of EAC with curative intervention greatly improves the prognoses of patients. A scanning fiber endoscope (SFE) using fluorescence-labeled peptides that bind rapidly to epidermal growth factor...
Autores principales: | Jiang, Yang, Chen, Jing, Gong, Chen, Wang, Thomas D., Seibel, Eric J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497969/ https://www.ncbi.nlm.nih.gov/pubmed/36140433 http://dx.doi.org/10.3390/diagnostics12092031 |
Ejemplares similares
-
Deep Learning and Minimally Invasive Endoscopy: Automatic Classification of Pleomorphic Gastric Lesions in Capsule Endoscopy
por: Mascarenhas, Miguel, et al.
Publicado: (2023) -
Deep learning for real-time detection of nasopharyngeal carcinoma during nasopharyngeal endoscopy
por: He, Zicheng, et al.
Publicado: (2023) -
Automatic classification and segmentation of single-molecule fluorescence time traces with deep learning
por: Li, Jieming, et al.
Publicado: (2020) -
Performance of a Deep Learning System for Automatic Diagnosis of Protruding Lesions in Colon Capsule Endoscopy
por: Mascarenhas, Miguel, et al.
Publicado: (2022) -
Automatic and Accurate Calculation of Rice Seed Setting Rate Based on Image Segmentation and Deep Learning
por: Guo, Yixin, et al.
Publicado: (2021)