Cargando…
A Block-Based Adaptive Decoupling Framework for Graph Neural Networks
Graph neural networks (GNNs) with feature propagation have demonstrated their power in handling unstructured data. However, feature propagation is also a smooth process that tends to make all node representations similar as the number of propagation increases. To address this problem, we propose a n...
Autores principales: | Shen, Xu, Zhang, Yuyang, Xie, Yu, Wong, Ka-Chun, Peng, Chengbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9497978/ https://www.ncbi.nlm.nih.gov/pubmed/36141076 http://dx.doi.org/10.3390/e24091190 |
Ejemplares similares
-
Decoupled neural network training with re-computation and weight prediction
por: Peng, Jiawei, et al.
Publicado: (2023) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023) -
A graph neural network framework based on preference-aware graph diffusion for recommendation
por: Shu, Tao, et al.
Publicado: (2022) -
Improving Chemical Reaction Prediction with Unlabeled Data
por: Xie, Yu, et al.
Publicado: (2022) -
A federated graph neural network framework for privacy-preserving personalization
por: Wu, Chuhan, et al.
Publicado: (2022)