Cargando…
Utility–Privacy Trade-Off in Distributed Machine Learning Systems
In distributed machine learning (DML), though clients’ data are not directly transmitted to the server for model training, attackers can obtain the sensitive information of clients by analyzing the local gradient parameters uploaded by clients. For this case, we use the differential privacy (DP) mec...
Autores principales: | Zeng, Xia, Yang, Chuanchuan, Dai, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498028/ https://www.ncbi.nlm.nih.gov/pubmed/36141185 http://dx.doi.org/10.3390/e24091299 |
Ejemplares similares
-
On the Lift, Related Privacy Measures, and Applications to Privacy–Utility Trade-Offs †
por: Zarrabian, Mohammad Amin, et al.
Publicado: (2023) -
Utility–Privacy Trade-Offs with Limited Leakage for Encoder
por: Shinohara, Naruki, et al.
Publicado: (2023) -
A secure location-based alert system with tunable privacy-performance trade-off
por: Ghinita, Gabriel, et al.
Publicado: (2020) -
Trading-off privacy and utility: the Washington State experience assessing the performance of a public health digital exposure notification system for coronavirus disease 2019
por: Segal, Courtney D, et al.
Publicado: (2022) -
Straggler-Aware Distributed Learning: Communication–Computation Latency Trade-Off
por: Ozfatura, Emre, et al.
Publicado: (2020)