Cargando…
Detecting the Critical States of Type 2 Diabetes Mellitus Based on Degree Matrix Network Entropy by Cross-Tissue Analysis
Type 2 diabetes mellitus (T2DM) is a metabolic disease caused by multiple etiologies, the development of which can be divided into three states: normal state, critical state/pre-disease state, and disease state. To avoid irreversible development, it is important to detect the early warning signals b...
Autores principales: | Yang, Yingke, Tian, Zhuanghe, Song, Mengyao, Ma, Chenxin, Ge, Zhenyang, Li, Peiluan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9498060/ https://www.ncbi.nlm.nih.gov/pubmed/36141135 http://dx.doi.org/10.3390/e24091249 |
Ejemplares similares
-
Clarifying How Degree Entropies and Degree-Degree Correlations Relate to Network Robustness
por: Jones, Chris, et al.
Publicado: (2022) -
Identifying Critical States of Complex Diseases by Single-Sample Jensen-Shannon Divergence
por: Yan, Jinling, et al.
Publicado: (2021) -
Identifying the critical states and dynamic network biomarkers of cancers based on network entropy
por: Liu, Juntan, et al.
Publicado: (2022) -
Revealing Tissue Heterogeneity and Spatial Dark Genes from Spatially Resolved Transcriptomics by Multiview Graph Networks
por: Li, Ying, et al.
Publicado: (2023) -
Potential network markers and signaling pathways for B cells of COVID-19 based on single-cell condition-specific networks
por: Li, Ying, et al.
Publicado: (2023)